ترغب بنشر مسار تعليمي؟ اضغط هنا

Stephen William Hawking: A Biographical Memoir

202   0   0.0 ( 0 )
 نشر من قبل Thomas Hertog
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stephen Hawkings contributions to the understanding of gravity, black holes and cosmology were truly immense. They began with the singularity theorems in the 1960s followed by his discovery that black holes have an entropy and consequently a finite temperature. Black holes were predicted to emit thermal radiation, what is now called Hawking radiation. He pioneered the study of primordial black holes and their potential role in cosmology. His organisation of and contributions to the Nuffield Workshop in 1982 consolidated the picture that the large-scale structure of the universe originated as quantum fluctuations during the inflationary era. Work on the interplay between quantum mechanics and general relativity resulted in his formulation of the concept of the wavefunction of the universe. The tension between quantum mechanics and general relativity led to his struggles with the information paradox concerning deep connections between these fundamental areas of physics. These achievements were all accomplished following the diagnosis during the early years of Stephens studies as a post-graduate student in Cambridge that he had incurable motor neuron disease -- he was given two years to live. Against all the odds, he lived a further 55 years. The distinction of his work led to many honours and he became a major public figure, promoting with passion the needs of disabled people. His popular best-selling book A Brief History of Time made cosmology and his own work known to the general public worldwide. He became an icon for science and an inspiration to all.



قيم البحث

اقرأ أيضاً

159 - N. W. Evans 2020
Donald Lynden-Bells many contributions to astrophysics encompass general relativity, galactic dynamics, telescope design and observational astronomy. In the 1960s, his papers on stellar dynamics led to fundamental insights into the equilibria of elli ptical galaxies, the growth of spiral patterns in disc galaxies and the stability of differentially rotating, self-gravitating flows. Donald introduced the ideas of `violent relaxation and `the gravothermal catastrophe in pioneering work on the thermodynamics of galaxies and negative heat capacities. He shared the inaugural Kavli Prize in Astrophysics in 2008 for his contributions to our understanding of quasars. His prediction that dead quasars or supermassive black holes may reside in the nuclei of nearby galaxies has been confirmed by multiple pieces of independent evidence. His work on accretion discs led to new insights into their workings, as well as the realisation that the infrared excess in T Tauri stars was caused by protostellar discs around these young stars. He introduced the influential idea of monolithic collapse of a gas cloud as a formation mechanism for the Milky Way Galaxy. As this gave way to modern ideas of merging and accretion as drivers of galaxy formation, Donald was the first to realise the importance of tidal streams as measures of the past history and present day gravity field of the Galaxy. Though primarily a theorist, Donald participated in one of the first observational programs to measure the large-scale streaming of nearby galaxies. This led to the discovery of the `Great Attractor. The depth and versatility of his contributions mark Donald out as one of the most influential and pre-eminent astronomers of his day.
Stirling Colgate was a remarkably imaginative physicist, an independent thinker with a wide breadth of interests and contagious enthusiasm, a born leader with enduring drive to attack fundamental problems in science. Among his many achievements, he f ounded the quantitative theory of stellar collapse and supernova explosions, and introduced numerical simulation into the astrophysical toolbox. He brought strong physical intuition to both theory and experiment, in the sciences of nuclear weapons, magnetic and inertial fusion, as well as astrophysics.
376 - James Hartle 2018
On the evening after Stephen Hawkings funeral in Cambridge on March 31, 2018 a dinner for attendees who had come from far away was hosted by Paul Shellard, the Director of the Centre for Theoretical Cosmology. I was asked me to speak for five minutes on my recollections of Stephen. This article is an slightly edited copy of my speaking text.
Julian Besag was an outstanding statistical scientist, distinguished for his pioneering work on the statistical theory and analysis of spatial processes, especially conditional lattice systems. His work has been seminal in statistical developments ov er the last several decades ranging from image analysis to Markov chain Monte Carlo methods. He clarified the role of auto-logistic and auto-normal models as instances of Markov random fields and paved the way for their use in diverse applications. Later work included investigations into the efficacy of nearest neighbour models to accommodate spatial dependence in the analysis of data from agricultural field trials, image restoration from noisy data, and texture generation using lattice models.
344 - David Valls-Gabaud 2012
We critically examine the evidence available of the early ideas on the bending of light due to a gravitational attraction, which led to the concept of gravitational lenses, and attempt to present an undistorted historical perspective. Contrary to a w idespread but baseless claim, Newton was not the precursor to the idea, and the first Query in his {sl Opticks} is totally unrelated to this phenomenon. We briefly review the roles of Voltaire, Marat, Cavendish, Soldner and Einstein in their attempts to quantify the gravitational deflection of light. The first, but unpublished, calculations of the lensing effect produced by this deflection are found in Einsteins 1912 notebooks, where he derived the lensing equation and the formation of images in a gravitational lens. The brief 1924 paper by Chwolson which presents, without calculations, the formation of double images and rings by a gravitational lens passed mostly unnoticed. The unjustly forgotten and true pioneer of the subject is F. Link, who not only published the first detailed lensing calculations in 1936, nine months prior to Einsteins famous paper in {sl Science}, but also extended the theory to include the effects of finite-size sources and lenses, binary sources, and limb darkening that same year. Link correctly predicted that the microlensing effect would be easier to observe in crowded fields or in galaxies, as observations confirmed five decades later. The calculations made by Link are far more detailed than those by Tikhov and Bogorodsky. We discuss briefly some papers of the early 1960s which marked the renaissance of this theoretical subject prior to the first detection of a gravitational lens in 1979, and we conclude with the unpublished chapter of Petrous 1981 PhD thesis addressing the microlensing of stars in the Magellanic clouds by dark objects in the Galactic halo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا