ﻻ يوجد ملخص باللغة العربية
This white paper discusses recent progress in the field of evolved stars, primarily highlighting the contributions of the James Clerk Maxwell Telescope. It discusses the ongoing project, the emph{Nearby Evolved Stars Survey} (NESS), and the potential to build upon NESS in the next decade. It then outlines a number of science cases which may become feasible with the proposed 850,$mu$m camera which is due to become available at the JCMT in late 2022. These include mapping the extended envelopes of evolved stars, including in polarisation, and time-domain monitoring of their variations. The improved sensitivity of the proposed instrument will facilitate statistical studies that put the morphology, polarisation properties and sub-mm variability in perspective with a relatively modest commitment of time that would be impossible with current instrumentation. We also consider the role that could be played by other continuum wavelengths, heterodyne instruments or other facilities in contributing towards these objectives.
Magnetic fields are ubiquitous in our Universe, but remain poorly understood in many branches of astrophysics. A key tool for inferring astrophysical magnetic field properties is dust emission polarimetry. The James Clerk Maxwell Telescope (JCMT) is
Models of the chemical evolution of the interstellar medium, galaxies, and the Universe rely on our understanding of the amounts and chemical composition of the material returned by stars and supernovae. Stellar yields are obtained from stellar-evolu
Over the past decade, research in resolved stellar populations has made great strides in exploring the nature of dark matter, in unraveling the star formation, chemical enrichment, and dynamical histories of the Milky Way and nearby galaxies, and in
High resolution maps of maser emission provide very detailed information on processes occurring in circumstellar envelopes of late-type stars. A particularly detailed picture of the innermost shells around AGB stars is provided by SiO masers. Conside
Cool, evolved stars are the main source of chemical enrichment of the interstellar medium (ISM), and understanding their mass loss and structure offers a unique opportunity to study the cycle of matter in the Universe. Pulsation, convection, and othe