ﻻ يوجد ملخص باللغة العربية
In this work we propose the generation of a hybrid entangled resource (HER) and its further application in a quantum teleportation scheme from an experimentally feasible point of view. The source for HER preparation is based on the four wave mixing process in a photonic crystal fiber, from which one party of its output bipartite state is used to herald a single photon or a single photon added coherent state. From the heralded state and linear optics the HER is created. In the proposed teleportation protocol Bob uses the HER to teleport qubits with different spectral properties. Bob makes a Bell measurement in the single photon basis and characterizes the scheme with its average quantum teleportation fidelity. Fidelities close to one are expected for qubits in a wide spectral range. The work also includes a discussion about the fidelity dependence on the geometrical properties of the medium through which the HER is generated. An important remark is that no spectral filtering is employed in the heralding process, which emphasizes the feasibility of this scheme without compromising photon flux.
Device-independent quantum key distribution (DI-QKD) represents one of the most fascinating challenges in quantum communication, exploiting concepts of fundamental physics, namely Bell tests of nonlocality, to ensure the security of a communication l
Understanding the relation between the different forms of inseparability in quantum mechanics is a longstanding problem in the foundations of quantum theory and has implications for quantum information processing. Here we make progress in this direct
We investigate continuous variable quantum teleportation using non-Gaussian states of the radiation field as entangled resources. We compare the performance of different classes of degaussified resources, including two-mode photon-added and two-mode
In continuous-variable quantum information, non-Gaussian entangled states that are obtained from Gaussian entangled states via photon subtraction are known to contain more entanglement. This makes them better resources for quantum information process
Quantum teleportation provides a way to transfer unknown quantum states from one system to another, without physical transmission of the object itself. The quantum channels in perfect teleportation (with 100% success probability and fidelity) to date