ترغب بنشر مسار تعليمي؟ اضغط هنا

Causally Correct Partial Models for Reinforcement Learning

176   0   0.0 ( 0 )
 نشر من قبل Ivo Danihelka
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In reinforcement learning, we can learn a model of future observations and rewards, and use it to plan the agents next actions. However, jointly modeling future observations can be computationally expensive or even intractable if the observations are high-dimensional (e.g. images). For this reason, previous works have considered partial models, which model only part of the observation. In this paper, we show that partial models can be causally incorrect: they are confounded by the observations they dont model, and can therefore lead to incorrect planning. To address this, we introduce a general family of partial models that are provably causally correct, yet remain fast because they do not need to fully model future observations.



قيم البحث

اقرأ أيضاً

Deep reinforcement learning is successful in decision making for sophisticated games, such as Atari, Go, etc. However, real-world decision making often requires reasoning with partial information extracted from complex visual observations. This paper presents Discriminative Particle Filter Reinforcement Learning (DPFRL), a new reinforcement learning framework for complex partial observations. DPFRL encodes a differentiable particle filter in the neural network policy for explicit reasoning with partial observations over time. The particle filter maintains a belief using learned discriminative update, which is trained end-to-end for decision making. We show that using the discriminative update instead of standard generative models results in significantly improved performance, especially for tasks with complex visual observations, because they circumvent the difficulty of modeling complex observations that are irrelevant to decision making. In addition, to extract features from the particle belief, we propose a new type of belief feature based on the moment generating function. DPFRL outperforms state-of-the-art POMDP RL models in Flickering Atari Games, an existing POMDP RL benchmark, and in Natural Flickering Atari Games, a new, more challenging POMDP RL benchmark introduced in this paper. Further, DPFRL performs well for visual navigation with real-world data in the Habitat environment.
We examine the question of when and how parametric models are most useful in reinforcement learning. In particular, we look at commonalities and differences between parametric models and experience replay. Replay-based learning algorithms share impor tant traits with model-based approaches, including the ability to plan: to use more computation without additional data to improve predictions and behaviour. We discuss when to expect benefits from either approach, and interpret prior work in this context. We hypothesise that, under suitable conditions, replay-based algorithms should be competitive to or better than model-based algorithms if the model is used only to generate fictional transitions from observed states for an update rule that is otherwise model-free. We validated this hypothesis on Atari 2600 video games. The replay-based algorithm attained state-of-the-art data efficiency, improving over prior results with parametric models.
Recent renewed interest in multi-agent reinforcement learning (MARL) has generated an impressive array of techniques that leverage deep reinforcement learning, primarily actor-critic architectures, and can be applied to a limited range of settings in terms of observability and communication. However, a continuing limitation of much of this work is the curse of dimensionality when it comes to representations based on joint actions, which grow exponentially with the number of agents. In this paper, we squarely focus on this challenge of scalability. We apply the key insight of action anonymity, which leads to permutation invariance of joint actions, to two recently presented deep MARL algorithms, MADDPG and IA2C, and compare these instantiations to another recent technique that leverages action anonymity, viz., mean-field MARL. We show that our instantiations can learn the optimal behavior in a broader class of agent networks than the mean-field method, using a recently introduced pragmatic domain.
In this paper, we present a new class of Markov decision processes (MDPs), called Tsallis MDPs, with Tsallis entropy maximization, which generalizes existing maximum entropy reinforcement learning (RL). A Tsallis MDP provides a unified framework for the original RL problem and RL with various types of entropy, including the well-known standard Shannon-Gibbs (SG) entropy, using an additional real-valued parameter, called an entropic index. By controlling the entropic index, we can generate various types of entropy, including the SG entropy, and a different entropy results in a different class of the optimal policy in Tsallis MDPs. We also provide a full mathematical analysis of Tsallis MDPs, including the optimality condition, performance error bounds, and convergence. Our theoretical result enables us to use any positive entropic index in RL. To handle complex and large-scale problems, we propose a model-free actor-critic RL method using Tsallis entropy maximization. We evaluate the regularization effect of the Tsallis entropy with various values of entropic indices and show that the entropic index controls the exploration tendency of the proposed method. For a different type of RL problems, we find that a different value of the entropic index is desirable. The proposed method is evaluated using the MuJoCo simulator and achieves the state-of-the-art performance.
Humans and animals have the ability to reason and make predictions about different courses of action at many time scales. In reinforcement learning, option models (Sutton, Precup & Singh, 1999; Precup, 2000) provide the framework for this kind of tem porally abstract prediction and reasoning. Natural intelligent agents are also able to focus their attention on courses of action that are relevant or feasible in a given situation, sometimes termed affordable actions. In this paper, we define a notion of affordances for options, and develop temporally abstract partial option models, that take into account the fact that an option might be affordable only in certain situations. We analyze the trade-offs between estimation and approximation error in planning and learning when using such models, and identify some interesting special cases. Additionally, we demonstrate empirically the potential impact of partial option models on the efficiency of planning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا