ترغب بنشر مسار تعليمي؟ اضغط هنا

On Approximation by Kantorovich Exponential Sampling Operators

240   0   0.0 ( 0 )
 نشر من قبل Sathish Kumar
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, we analyse the Kantorovich type exponential sampling operators and its linear combination. We derive the Voronovskaya type theorem and its quantitative estimates for these operators in terms of an appropriate K-functional. Further, we improve the order of approximation by using the convex type linear combinations of these operators. Subsequently, we prove the estimates concerning the order of convergence for these linear combinations. Finally, we give some examples of kernels along with the graphical representations.



قيم البحث

اقرأ أيضاً

We refine a result of Matei and Meyer on stable sampling and stable interpolation for simple model sets. Our setting is model sets in locally compact abelian groups and Fourier analysis of unbounded complex Radon measures as developed by Argabright a nd de Lamadrid. This leads to a refined version of the underlying model set duality between sampling and interpolation. For rather general model sets, our methods also yield an elementary proof of stable sampling and stable interpolation sufficiently far away from the critical density, which is based on the Poisson Summation Formula.
Reconstructing a band-limited function from its finite sample data is a fundamental task in signal analysis. A simple Gaussian or hyper-Gaussian regularized Shannon sampling series has been proved to be able to achieve exponential convergence for uni form sampling. In this paper, we prove that exponential approximation can also be attained for general nonuniform sampling. The analysis is based on the the residue theorem to represent the truncated error by a contour integral. Several concrete examples of nonuniform sampling with exponential convergence will be presented.
We study a non-archimedean (NA) version of transportation problems and introduce naturally arising ultra-norms which we call Kantorovich ultra-norms. For every ultra-metric space and every NA valued field (e.g., the field $mathbb Q_{p}$ of $p$-adic n umbers) the naturally defined inf-max cost formula achieves its infimum. We also present
Let $J$ and $R$ be anti-commuting fundamental symmetries in a Hilbert space $mathfrak{H}$. The operators $J$ and $R$ can be interpreted as basis (generating) elements of the complex Clifford algebra ${mathcal C}l_2(J,R):={span}{I, J, R, iJR}$. An arb itrary non-trivial fundamental symmetry from ${mathcal C}l_2(J,R)$ is determined by the formula $J_{vec{alpha}}=alpha_{1}J+alpha_{2}R+alpha_{3}iJR$, where ${vec{alpha}}inmathbb{S}^2$. Let $S$ be a symmetric operator that commutes with ${mathcal C}l_2(J,R)$. The purpose of this paper is to study the sets $Sigma_{{J_{vec{alpha}}}}$ ($forall{vec{alpha}}inmathbb{S}^2$) of self-adjoint extensions of $S$ in Krein spaces generated by fundamental symmetries ${{J_{vec{alpha}}}}$ (${{J_{vec{alpha}}}}$-self-adjoint extensions). We show that the sets $Sigma_{{J_{vec{alpha}}}}$ and $Sigma_{{J_{vec{beta}}}}$ are unitarily equivalent for different ${vec{alpha}}, {vec{beta}}inmathbb{S}^2$ and describe in detail the structure of operators $AinSigma_{{J_{vec{alpha}}}}$ with empty resolvent set.
111 - Thomas Kalmes 2018
We study power boundedness and related properties such as mean ergodicity for (weighted) composition operators on function spaces defined by local properties. As a main application of our general approach we characterize when (weighted) composition o perators are power bounded, topologizable, and (uniformly) mean ergodic on kernels of certain linear partial differential operators including elliptic operators as well as non-degenrate parabolic operators. Moreover, under mild assumptions on the weight and the symbol we give a characterisation of those weighted composition operators on the Frechet space of continuous functions on a locally compact, $sigma$-compact, non-compact Hausdorff space which are generators of strongly continuous semigroups on these spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا