ترغب بنشر مسار تعليمي؟ اضغط هنا

Accurate optical spectra through time-dependent density functional theory based on screening-dependent hybrid functionals

95   0   0.0 ( 0 )
 نشر من قبل Alexey Tal A
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate optical absorption spectra obtained through time-dependent density functional theory (TD-DFT) based on nonempirical hybrid functionals that are designed to correctly reproduce the dielectric function. The comparison with state-of-the-art $GW$ calculations followed by the solution of the Bethe-Sapeter equation (BSE-$GW$) shows close agreement for both the transition energies and the main features of the spectra. We confront TD-DFT with BSE-$GW$ by focusing on the model dielectric function and the local exchange-correlation kernel. The present TD-DFT approach achieves the accuracy of BSE-$GW$ at a fraction of the computational cost.



قيم البحث

اقرأ أيضاً

We present accurate optical spectra of semiconductors and insulators within a pure Kohn-Sham time-dependent density-functional approach. In particular, we show that the onset of the absorption is well reproduced when comparing to experiment. No empir ical information nor a theory beyond Kohn-Sham density-functional theory, such as $GW$, is invoked to correct the Kohn-Sham gap. Our approach relies on the link between the exchange-correlation kernel of time-dependent density functional theory and the derivative discontinuity of ground-state density-functional theory. We show explicitly how to relate these two quantities. We illustrate the accuracy and simplicity of our approach by applying it to various semiconductors (Si, GaP, GaAs) and wide-gap insulators (C, LiF, Ar).
The optical spectra of two-dimensional (2D) periodic systems provide a challenge for time-dependent density-functional theory (TDDFT) because of the large excitonic effects in these materials. In this work we explore how accurately these spectra can be described within a pure Kohn-Sham time-dependent density-functional framework, i.e., a framework in which no theory beyond Kohn-Sham density-functional theory, such as $GW$, is required to correct the Kohn-Sham gap. To achieve this goal we adapted a recent approach we developed for the optical spectra of 3D systems [Cavo, Berger, Romaniello, Phys. Rev. B 101, 115109 (2020)] to those of 2D systems. Our approach relies on the link between the exchange-correlation kernel of TDDFT and the derivative discontinuity of ground-state density-functional theory, which guarantees a correct quasi-particle gap, and on a generalization of the polarization functional [Berger, Phys. Rev. Lett., 115, 137402 (2015)], which describes the excitonic effects. We applied our approach to two prototypical 2D monolayers, $h$-BN and MoS$_2$. We find that our protocol gives a qualitative good description of the optical spectrum of $h$-BN, whereas improvements are needed for MoS$_2$ to describe the intensity of the excitonic peaks.
Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BigDFT and results are compared against those obtained with the all-electron Gaussian-type orbi tal program deMon2k for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BigDFT than for deMon2k. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BigDFT, while all virtual orbitals are included in TD-DFT calculations in deMon2k. As a reality check, we report the x-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1,2-a]pyridin-3-amine.
Time-dependent density-functional theory (TDDFT) is a computationally efficient first-principles approach for calculating optical spectra in insulators and semiconductors, including excitonic effects. We show how exciton wave functions can be obtaine d from TDDFT via the Kohn-Sham transition density matrix, both in the frequency-dependent linear-response regime and in real-time propagation. The method is illustrated using one-dimensional model solids. In particular, we show that our approach provides insight into the formation and dissociation of excitons in real time. This opens the door to time-resolved studies of exciton dynamics in materials by means of real-time TDDFT.
154 - G. Vignale 2008
I show that the so-called causality paradox of time-dependent density functional theory arises from an incorrect formulation of the variational principle for the time evolution of the density. The correct formulation not only resolves the paradox in real time, but also leads to a new expression for the causal exchange-correlation kernel in terms of Berry curvature. Furthermore, I show that all the results that were previously derived from symmetries of the action functional remain valid in the present formulation. Finally, I develop a model functional theory which explicitly demonstrates the workings of the new formulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا