ﻻ يوجد ملخص باللغة العربية
We derive global convergence bounds for the Frank Wolfe algorithm when training one hidden layer neural networks. When using the ReLU activation function, and under tractable preconditioning assumptions on the sample data set, the linear minimization oracle used to incrementally form the solution can be solved explicitly as a second order cone program. The classical Frank Wolfe algorithm then converges with rate $O(1/T)$ where $T$ is both the number of neurons and the number of calls to the oracle.
We develop a novel variant of the classical Frank-Wolfe algorithm, which we call spectral Frank-Wolfe, for convex optimization over a spectrahedron. The spectral Frank-Wolfe algorithm has a novel ingredient: it computes a few eigenvectors of the grad
We study projection-free methods for constrained Riemannian optimization. In particular, we propose the Riemannian Frank-Wolfe (RFW) method. We analyze non-asymptotic convergence rates of RFW to an optimum for (geodesically) convex problems, and to a
We unveil the connections between Frank Wolfe (FW) type algorithms and the momentum in Accelerated Gradient Methods (AGM). On the negative side, these connections illustrate why momentum is unlikely to be effective for FW type algorithms. The encoura
Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper
We propose a novel Stochastic Frank-Wolfe (a.k.a. conditional gradient) algorithm for constrained smooth finite-sum minimization with a generalized linear prediction/structure. This class of problems includes empirical risk minimization with sparse,