ﻻ يوجد ملخص باللغة العربية
Deep neural networks (DNNs) are vulnerable to adversarial examples, which are crafted by adding imperceptible perturbations to inputs. Recently different attacks and strategies have been proposed, but how to generate adversarial examples perceptually realistic and more efficiently remains unsolved. This paper proposes a novel framework called Attack-Inspired GAN (AI-GAN), where a generator, a discriminator, and an attacker are trained jointly. Once trained, it can generate adversarial perturbations efficiently given input images and target classes. Through extensive experiments on several popular datasets eg MNIST and CIFAR-10, AI-GAN achieves high attack success rates and reduces generation time significantly in various settings. Moreover, for the first time, AI-GAN successfully scales to complicated datasets eg CIFAR-100 with around $90%$ success rates among all classes.
Deep neural networks are vulnerable to adversarial examples that are crafted by imposing imperceptible changes to the inputs. However, these adversarial examples are most successful in white-box settings where the model and its parameters are availab
Graph deep learning models, such as graph convolutional networks (GCN) achieve remarkable performance for tasks on graph data. Similar to other types of deep models, graph deep learning models often suffer from adversarial attacks. However, compared
Evaluating robustness of machine-learning models to adversarial examples is a challenging problem. Many defenses have been shown to provide a false sense of security by causing gradient-based attacks to fail, and they have been broken under more rigo
Despite the remarkable success of deep neural networks, significant concerns have emerged about their robustness to adversarial perturbations to inputs. While most attacks aim to ensure that these are imperceptible, physical perturbation attacks typi
Adversarial examples have become one of the largest challenges that machine learning models, especially neural network classifiers, face. These adversarial examples break the assumption of attack-free scenario and fool state-of-the-art (SOTA) classif