ﻻ يوجد ملخص باللغة العربية
On the basis of first-principles calculations, we propose a superconductivity of carbon compounds with a sodalite structure, which is similar to a hydrogen compound with a very high superconducting transition temperature, $T_{rm c}$. Our systematic calculation shows that some of these carbon compounds have a $T_{rm c}$ of up to about 100 K at a pressure of about 30 GPa, which is lower than that of superconducting hydrides (above 100 GPa). The obtained phonon dispersions appear to be similar to each other, and this suggests that the sodalite structure may be a key to generating phonon-mediated high-$T_{rm c}$ superconductivity.
We report ab-initio calculations of the superconducting properties of two high-Tc sodalite-like clathrate yttrium hydrides, YH6 and YH10, within the fully anisotropic ME theory, including Coulomb corrections. For both compounds we find almost isotrop
The layered iron superconductors are discussed using electronic structure calculations. The four families of compounds discovered so far, including Fe(Se,Te) have closely related electronic structures. The Fermi surface consists of disconnected hole
Since the discovery of superconductivity in a high-entropy alloy (HEA) Ti-Zr-Nb-Hf-Ta in 2014, the community of superconductor science has explored new HEA superconductors to find the merit of the HEA states on superconducting properties. Since 2018,
We succeeded in growing a single crystal of Ce2CoIn8 by the flux method. The results of specific heat and electrical resistivity measurements indicate that Ce2CoIn8 is a heavy-fermion superconductor below 0.4 K with an electronic specific heat coefficient gamma as large as 500 mJ/K^2mol-Ce.
Recent experimental and theoretical results on intrinsic superconductivity in ropes of single-wall carbon nanotubes are reviewed and compared. We find strong experimental evidence for superconductivity when the distance between the normal electrodes