ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate Gaussian process modeling with input location error, where the inputs are corrupted by noise. Here, the best linear unbiased predictor for two cases is considered, according to whether there is noise at the target unobserved location or not. We show that the mean squared prediction error converges to a non-zero constant if there is noise at the target unobserved location, and provide an upper bound of the mean squared prediction error if there is no noise at the target unobserved location. We investigate the use of stochastic Kriging in the prediction of Gaussian processes with input location error, and show that stochastic Kriging is a good approximation when the sample size is large. Several numeric examples are given to illustrate the results, and a case study on the assembly of composite parts is presented. Technical proofs are provided in the Appendix.
Many popular robust estimators are $U$-quantiles, most notably the Hodges-Lehmann location estimator and the $Q_n$ scale estimator. We prove a functional central limit theorem for the sequential $U$-quantile process without any moment assumptions and
Gaussian process modeling is a standard tool for building emulators for computer experiments, which are usually used to study deterministic functions, for example, a solution to a given system of partial differential equations. This work investigates
In this paper we introduce a novel model for Gaussian process (GP) regression in the fully Bayesian setting. Motivated by the ideas of sparsification, localization and Bayesian additive modeling, our model is built around a recursive partitioning (RP
We provide the strong approximation of empirical copula processes by a Gaussian process. In addition we establish a strong approximation of the smoothed empirical copula processes and a law of iterated logarithm.
We are interested in estimating the location of what we call smooth change-point from $n$ independent observations of an inhomogeneous Poisson process. The smooth change-point is a transition of the intensity function of the process from one level to