ﻻ يوجد ملخص باللغة العربية
Star spot evolution is visible evidence of the emergence/decay of the magnetic field on stellar surface, and it is therefore important for the understanding of the underlying stellar dynamo and consequential stellar flares. In this paper, we report the temporal evolution of individual star spot area on the hot-Jupiter-hosting active solar-type star Kepler 17 whose transits occur every 1.5 days. The spot longitude and area evolution are estimated (1) from the stellar rotational modulations of Kepler data and (2) from the brightness enhancements during the exoplanet transits caused by existence of large star spots. As a result of the comparison, number of spots, spot locations, and the temporal evolution derived from the rotational modulations is largely different from those of in-transit spots. We confirm that although only two light curve minima appear per rotation, there are clearly many spots present on the star. We find that the observed differential intensity changes are sometimes consistent with the spot pattern detected by transits, but they sometimes do not match with each other. Although the temporal evolution derived from the rotational modulation differs from those of in-transit spots to a certain degree, the emergence/decay rates of in-transit spots are within an order of magnitude of those derived for sunspots as well as our previous research based only on rotational modulations. This supports a hypothesis that the emergence/decay of sunspots and extremely-large star spots on solar-type stars occur through the same underlying processes.
Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD95086. The strong infrared excess of the system indicates that, similarly to HR8799, {ss} Pic, and Fomalhaut, the star harbors a circumstellar
Context. The detection of planets orbiting chemically peculiar stars is very scarcely known in the literature. Aims. To determine the detailed chemical composition of the remarkable planet host star KELT-17. This object hosts a hot-Jupiter planet wit
The space experiment CoRoT has recently detected a transiting hot Jupiter in orbit around a moderately active F-type main-sequence star (CoRoT-Exo-4a). This planetary system is of particular interest because it has an orbital period of 9.202 days, th
HD189733 is an active K dwarf that is, with its transiting hot Jupiter, among the most studied exoplanetary systems. In this first paper of the Multiwavelength Observations of an eVaporating Exoplanet and its Star (MOVES) program, we present a 2-year
The CoRoT satellite has recently discovered the transits of a telluric planet across the disc of a late-type magnetically active star dubbed CoRoT-7, while a second planet has been detected after filtering out the radial velocity (hereafter RV) varia