ترغب بنشر مسار تعليمي؟ اضغط هنا

On unimodular multilinear forms with small norms on sequence spaces

93   0   0.0 ( 0 )
 نشر من قبل Daniel M. Pellegrino
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Kahane--Salem--Zygmund inequality is a probabilistic result that guarantees the existence of special matrices with entries $1$ and $-1$ generating unimodular $m$-linear forms $A_{m,n}:ell_{p_{1}}^{n}times cdotstimesell_{p_{m}}^{n}longrightarrowmathbb{R}$ (or $mathbb{C}$) with relatively small norms. The optimal asymptotic estimates for the smallest possible norms of $A_{m,n}$ when $left{ p_{1},...,p_{m}right} subsetlbrack2,infty]$ and when $left{ p_{1},...,p_{m}right} subsetlbrack1,2)$ are well-known and in this paper we obtain the optimal asymptotic estimates for the remaining case: $left{ p_{1},...,p_{m}right} $ intercepts both $[2,infty]$ and $[1,2)$. In particular we prove that a conjecture posed by Albuquerque and Rezende is false and, using a special type of matrices that dates back to the works of Toeplitz, we also answer a problem posed by the same authors.



قيم البحث

اقرأ أيضاً

Various norms can be defined on a Krein space by choosing different underlying fundamental decompositions. Some estimates of norms on Krein spaces are discussed and few results in Bognars paper are generalized.
171 - Rosario Corso 2018
The possibility of defining sesquilinear forms starting from one or two sequences of elements of a Hilbert space is investigated. One can associate operators to these forms and in particular look for conditions to apply representation theorems of ses quilinear forms, such as Katos theorems. The associated operators correspond to classical frame operators or weakly-defined multipliers in the bounded context. In general some properties of them, such as the invertibility and the resolvent set, are related to properties of the sesquilinear forms. As an upshot of this approach new features of sequences (or pairs of sequences) which are semi-frames (or reproducing pairs) are obtained.
Using elementary techniques, we prove sharp anisotropic Hardy-Littlewood inequalities for positive multilinear forms. In particular, we recover an inequality proved by F. Bayart in 2018.
We investigate dynamical properties such as topological transitivity, (sequential) hypercyclicity, and chaos for backward shift operators associated to a Schauder basis on LF-spaces. As an application, we characterize these dynamical properties for w eighted generalized backward shifts on Kothe coechelon sequence spaces $k_p((v^{(m)})_{minmathbb{N}})$ in terms of the defining sequence of weights $(v^{(m)})_{minmathbb{N}}$. We further discuss several examples and show that the annihilation operator from quantum mechanics is mixing, sequentially hypercyclic, chaotic, and topologically ergodic on $mathscr{S}(mathbb{R})$.
86 - Andreas Debrouwere 2020
We obtain sequence space representations for a class of Frechet spaces of entire functions with rapid decay on horizontal strips. In particular, we show that the projective Gelfand-Shilov spaces $Sigma^1_ u$ and $Sigma^ u_1$ are isomorphic to $Lambda_{infty}(n^{1/( u+1)})$ for $ u > 0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا