ﻻ يوجد ملخص باللغة العربية
The Kahane--Salem--Zygmund inequality is a probabilistic result that guarantees the existence of special matrices with entries $1$ and $-1$ generating unimodular $m$-linear forms $A_{m,n}:ell_{p_{1}}^{n}times cdotstimesell_{p_{m}}^{n}longrightarrowmathbb{R}$ (or $mathbb{C}$) with relatively small norms. The optimal asymptotic estimates for the smallest possible norms of $A_{m,n}$ when $left{ p_{1},...,p_{m}right} subsetlbrack2,infty]$ and when $left{ p_{1},...,p_{m}right} subsetlbrack1,2)$ are well-known and in this paper we obtain the optimal asymptotic estimates for the remaining case: $left{ p_{1},...,p_{m}right} $ intercepts both $[2,infty]$ and $[1,2)$. In particular we prove that a conjecture posed by Albuquerque and Rezende is false and, using a special type of matrices that dates back to the works of Toeplitz, we also answer a problem posed by the same authors.
Various norms can be defined on a Krein space by choosing different underlying fundamental decompositions. Some estimates of norms on Krein spaces are discussed and few results in Bognars paper are generalized.
The possibility of defining sesquilinear forms starting from one or two sequences of elements of a Hilbert space is investigated. One can associate operators to these forms and in particular look for conditions to apply representation theorems of ses
Using elementary techniques, we prove sharp anisotropic Hardy-Littlewood inequalities for positive multilinear forms. In particular, we recover an inequality proved by F. Bayart in 2018.
We investigate dynamical properties such as topological transitivity, (sequential) hypercyclicity, and chaos for backward shift operators associated to a Schauder basis on LF-spaces. As an application, we characterize these dynamical properties for w
We obtain sequence space representations for a class of Frechet spaces of entire functions with rapid decay on horizontal strips. In particular, we show that the projective Gelfand-Shilov spaces $Sigma^1_ u$ and $Sigma^ u_1$ are isomorphic to $Lambda_{infty}(n^{1/( u+1)})$ for $ u > 0$.