ﻻ يوجد ملخص باللغة العربية
Websites with hyper-partisan, left or right-leaning focus offer content that is typically biased towards the expectations of their target audience. Such content often polarizes users, who are repeatedly primed to specific (extreme) content, usually reflecting hard party lines on political and socio-economic topics. Though this polarization has been extensively studied with respect to content, it is still unknown how it associates with the online tracking experienced by browsing users, especially when they exhibit certain demographic characteristics. For example, it is unclear how such websites enable the ad-ecosystem to track users based on their gender or age. In this paper, we take a first step to shed light and measure such potential differences in tracking imposed on users when visiting specific party-lines websites. For this, we design and deploy a methodology to systematically probe such websites and measure differences in user tracking. This methodology allows us to create user personas with specific attributes like gender and age and automate their browsing behavior in a consistent and repeatable manner. Thus, we systematically study how personas are being tracked by these websites and their third parties, especially if they exhibit particular demographic properties. Overall, we test 9 personas on 556 hyper-partisan websites and find that right-leaning websites tend to track users more intensely than left-leaning, depending on user demographics, using both cookies and cookie synchronization methods and leading to more costly delivered ads.
During the past few years, mostly as a result of the GDPR and the CCPA, websites have started to present users with cookie consent banners. These banners are web forms where the users can state their preference and declare which cookies they would li
Online tracking has become of increasing concern in recent years, however our understanding of its extent to date has been limited to snapshots from web crawls. Previous at-tempts to measure the tracking ecosystem, have been done using instrumented m
We study six months of human mobility data, including WiFi and GPS traces recorded with high temporal resolution, and find that time series of WiFi scans contain a strong latent location signal. In fact, due to inherent stability and low entropy of h
Many people believe that it is disadvantageous for members aligning with a minority party to cluster in cities, as this makes it easier for the majority party to gerrymander district boundaries to diminish the representation of the minority. We exami
We consider real-time timely tracking of infection status (e.g., covid-19) of individuals in a population. In this work, a health care provider wants to detect infected people as well as people who recovered from the disease as quickly as possible. I