ﻻ يوجد ملخص باللغة العربية
We give a generalization to a continuous setting of the classic Markov chain tree Theorem. In particular, we consider an irreducible diffusion process on a metric graph. The unique invariant measure has an atomic component on the vertices and an absolutely continuous part on the edges. We show that the corresponding density at $x$ can be represented by a normalized superposition of the weights associated to metric arborescences oriented toward the point $x$. The weight of each oriented metric arborescence is obtained by the exponential of integrals of the form $intfrac{b}{sigma^2}$ along the oriented edges time a weight for each node determined by the local orientation of the arborescence around the node time the inverse of the diffusion coefficient at $x$. The metric arborescences are obtained cutting the original metric graph along some edges.
We study a class of Markov chains that model the evolution of a quantum system subject to repeated measurements. Each Markov chain in this class is defined by a measure on the space of matrices. It is then given by a random product of correlated matr
This paper proves the strong parabolic Harnack inequality for local weak solutions to the heat equation associated with time-dependent (nonsymmetric) bilinear forms. The underlying metric measure Dirichlet space is assumed to satisfy the volume doubl
We show that the lift zonoid concept for a probability measure on R^d, introduced in (Koshevoy and Mosler, 1997), leads naturally to a one-to one representation of any interior point of the convex hull of the support of a continuous measure as the ba
We develop the theory of strong stationary duality for diffusion processes on compact intervals. We analytically derive the generator and boundary behavior of the dual process and recover a central tenet of the classical Markov chain theory in the di
We consider a real-valued diffusion process with a linear jump term driven by a Poisson point process and we assume that the jump amplitudes have a centered density with finite moments. We show upper and lower estimates for the density of the solutio