ﻻ يوجد ملخص باللغة العربية
The intrinsic nature of glass states or glass transitions has been a mystery for a long time. Recently, more and more studies tend to show that a glass locates at a specific potential energy landscape (PEL). To explore how the flatness of the PEL related to glass transition, we develop a method to adjust the PEL in a controllable manner. We demonstrate that a relatively flat PEL is not only necessary but also sufficient for the formation of a nanoscale glass. We show that: (1) as long as a nanocluster is located in a region of PEL with local minimum deep enough, it can undergo a first-order solid-liquid phase transition; and (2) if a nanocluster is located in a relatively flat PEL, it can undergo a glass transition. All these transitions are independent of its structure symmetry, order or disorder. Our simulations also uncover the direct transition from one potential energy minimum to another below the glass transition temperature, which is the consequence of flat PELs.
In this study, micro-droplets are placed on thin, glassy, free-standing films where the Laplace pressure of the droplet deforms the free-standing film, creating a bulge. The films tension is modulated by changing temperature continuously from well be
We investigate the heterogeneous dynamics in a model, where chemical gelation and glass transition interplay, focusing on the dynamical susceptibility. Two independent mechanisms give raise to the correlations, which are manifested in the dynamical s
Understanding the coordination of cell division timing is one of the outstanding questions in the field of developmental biology. One active control parameter of the cell cycle duration is temperature, as it can accelerate or decelerate the rate of b
The question about the existence of a structural glass transition in two dimensions is studied using mode coupling theory (MCT). We determine the explicit d-dependence of the memory functional of mode coupling for one-component systems. Applied to tw
The glass transition in hydrogen-bonded glass formers differs from the glass transition in other glass formers. The Eshelby rearrangements of the highly viscous flow are superimposed by strongly asymmetric hydrogen bond rupture processes, responsible