ﻻ يوجد ملخص باللغة العربية
The thermodynamic uncertainty relation (TUR) is expected to hold in nanoscale electronic conductors, when the electron transport process is quantum coherent and the transmission probability is constant (energy and voltage independent). We present measurements of the electron current and its noise in gold atomic-scale junctions and confirm the validity of the TUR for electron transport in realistic quantum coherent conductors. Furthermore, we show that it is beneficial to present the current and its noise as a TUR ratio in order to identify deviations from noninteracting-electron coherent dynamics.
Recently, a thermodynamic uncertainty relation (TUR) has been formulated for classical Markovian systems demonstrating trade-off between precision (current fluctuation) and cost (dissipation). Systems that violate the TUR are interesting as they over
The thermodynamic uncertainty relation, originally derived for classical Markov-jump processes, provides a trade-off relation between precision and dissipation, deepening our understanding of the performance of quantum thermal machines. Here, we exam
To reveal the role of the quantumness in the Otto cycle and to discuss the validity of the thermodynamic uncertainty relation (TUR) in the cycle, we study the quantum Otto cycle and its classical counterpart. In particular, we calculate exactly the m
A duality relation between the long-time dynamics of a quantum Brownian particle in a tilted ratchet potential and a driven dissipative tight-binding model is reported. It relates a situation of weak dissipation in one model to strong dissipation in
Thermodynamic equilibrium properties of a macroscopic system emerge from an interaction with a thermal bath. In the weak coupling regime, the description of thermodynamic states turns possible to describe the system in terms of its time-independent i