ﻻ يوجد ملخص باللغة العربية
Nonlocality is an interesting topic in quantum physics and is usually mediated by some unique quantum states. Here we investigate a Weyl semimetal slab and find an exotic nonlocal correlation effect when placing two potential wells merely on the top and bottom surfaces. This correlation arises from the peculiar Weyl orbit in Weyl semimetals and is a consequence of the bulk-boundary correspondence in topological band theory. A giant nonlocal transport signal and a body breakdown by Weyl fermions are further uncovered, which can serve as signatures for verifying this nonlocal correlation effect experimentally. Our results extend a new member in the nonlocality family and have potential applications for designing new electric devices with fancy functions.
Recently synthesized 3D materials with Dirac spectrum exhibit peculiar electric transport qualitatively different from its 2D analogue, graphene. Neglecting impuritiy scattering, the real part of the conductivity is strongly frequency dependent (line
Weyl semimetals in a magnetic field give rise to interesting non-local electronic orbits: the ballistic transport through the bulk enabled by the chiral Landau levels is combined with a momentum-space sliding along the surface Fermi-arc driven by the
Emergent relativistic quasiparticles in Weyl semimetals are the source of exotic electronic properties such as surface Fermi arcs, the anomalous Hall effect, and negative magnetoresistance, all observed in real materials. Whereas these phenomena high
We investigate the relaxation of rectangular wrinkled thin films intrinsically containing an initial strain gradient. A preferential rolling direction, depending on wrinkle geometry and strain gradient, is theoretically predicted and experimentally v
In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dot