ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of the Electron-Phonon Interaction of Topological Semimetal Surfaces Measured with Helium Atom Scattering

75   0   0.0 ( 0 )
 نشر من قبل Anton Tamt\\\"ogl
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

He atom scattering has been demonstrated to be a sensitive probe of the electron-phonon interaction parameter $lambda$ at metal and metal-overlayer surfaces. Here it is shown that the theory linking $lambda$ to the thermal attenuation of atom scattering spectra (the Debye-Waller factor), can be applied to topological semimetal surfaces, like the quasi-one dimensional charge-density-wave system Bi(114) and the layered pnictogen chalcogenides.



قيم البحث

اقرأ أيضاً

A new quantum-theoretical derivation of the elastic and inelastic scattering probability of He atoms from a metal surface, where the energy and momentum exchange with the phonon gas can only occur through the mediation of the surface free-electron de nsity, shows that the Debye-Waller exponent is directly proportional to the electron-phonon mass coupling constant $lambda$. The comparison between the values of $lambda$ extracted from existing data on the Debye-Waller factor for various metal surfaces and the $lambda$ values known from literature indicates a substantial agreement, which opens the possibility of directly extracting the electron-phonon coupling strength in quasi-2D conducting systems from the temperature or incident energy dependence of the elastic Helium atom scattering intensities.
We have studied the topological insulator Bi$_2$Te$_3$(111) by means of helium atom scattering. The average electron-phonon coupling $lambda$ of Bi$_2$Te$_3$(111) is determined by adapting a recently developed quantum-theoretical derivation of the he lium scattering probabilities to the case of degenerate semiconductors. Based on the Debye-Waller attenuation of the elastic diffraction peaks of Bi$_2$Te$_3$(111), measured at surface temperatures between $110~mbox{K}$ and $355~mbox{K}$, we find $lambda$ to be in the range of $0.04-0.11$. This method allows to extract a correctly averaged $lambda$ and to address the discrepancy between previous studies. The relatively modest value of $lambda$ is not surprising even though some individual phonons may provide a larger electron-phonon interaction. Furthermore, the surface Debye temperature of Bi$_2$Te$_3$(111) is determined as ${rm Theta}_D = (81pm6)~mbox{K}$. The electronic surface corrugation was analysed based on close-coupling calculations. By using a corrugated Morse potential a peak-to-peak corrugation of 9% of the lattice constant is obtained.
Thermoelectric properties of graphene nanoribbons with periodic edge vacancies and antidot lattice are investigated. The electron-phonon interaction is taken into account in the framework of the Hubbard-Holstein model with the use of the Lang-Firsov unitary transformation scheme. The electron transmission function, the thermopower and the thermoelectric figure of merit are calculated. We have found that the electron-phonon interaction causes a decrease in the peak values of the thermoelectric figure of merit and the shift of the peak positions closer to the center of the bandgap. The effects are more pronounced for the secondary peaks that appear in the structures with periodic antidot.
238 - Dohun Kim , Qiuzi Li , Paul Syers 2012
We measure the temperature-dependent carrier density and resistivity of the topological surface state of thin exfoliated Bi2Se3 in the absence of bulk conduction. When the gate-tuned chemical potential is near or below the Dirac point the carrier den sity is strongly temperature dependent reflecting thermal activation from the nearby bulk valence band, while above the Dirac point, unipolar n-type surface conduction is observed with negligible thermal activation of bulk carriers. In this regime linear resistivity vs. temperature reflects intrinsic electron-acoustic phonon scattering. Quantitative comparison with a theoretical transport calculation including both phonon and disorder effects gives the ratio of deformation potential to Fermi velocity D/hbarvF = 4.7 {AA}-1. This strong phonon scattering in the Bi2Se3 surface state gives intrinsic limits for the conductivity and charge carrier mobility at room temperature of ~550 {mu}S per surface and ~10,000 cm2/Vs.
118 - Jiang-Tao Liu 2016
The effect of the resonance of electron scattering energy difference and phonon energy on the electron-phonon-electron interaction (EPEI) is studied. Results show that the resonance of electron transition energy and phonon energy can enhance EPEI by a magnitude of 1 to 2. Moreover, the anisotropic S-wave electron or dx2-y2 electron can enhance resonance EPEI, and the self-energy correction of the electron will weaken resonance EPEI. Particularly, the asymmetrical spin-flip scattering process in k space can reduce the effect of electronic self-energy to enhance resonance EPEI
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا