ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving LPCNet-based Text-to-Speech with Linear Prediction-structured Mixture Density Network

67   0   0.0 ( 0 )
 نشر من قبل Min-Jae Hwang
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose an improved LPCNet vocoder using a linear prediction (LP)-structured mixture density network (MDN). The recently proposed LPCNet vocoder has successfully achieved high-quality and lightweight speech synthesis systems by combining a vocal tract LP filter with a WaveRNN-based vocal source (i.e., excitation) generator. However, the quality of synthesized speech is often unstable because the vocal source component is insufficiently represented by the mu-law quantization method, and the model is trained without considering the entire speech production mechanism. To address this problem, we first introduce LP-MDN, which enables the autoregressive neural vocoder to structurally represent the interactions between the vocal tract and vocal source components. Then, we propose to incorporate the LP-MDN to the LPCNet vocoder by replacing the conventional discretized output with continuous density distribution. The experimental results verify that the proposed system provides high quality synthetic speech by achieving a mean opinion score of 4.41 within a text-to-speech framework.



قيم البحث

اقرأ أيضاً

LPCNet is an efficient vocoder that combines linear prediction and deep neural network modules to keep the computational complexity low. In this work, we present two techniques to further reduce its complexity, aiming for a low-cost LPCNet vocoder-ba sed neural Text-to-Speech (TTS) System. These techniques are: 1) Sample-bunching, which allows LPCNet to generate more than one audio sample per inference; and 2) Bit-bunching, which reduces the computations in the final layer of LPCNet. With the proposed bunching techniques, LPCNet, in conjunction with a Deep Convolutional TTS (DCTTS) acoustic model, shows a 2.19x improvement over the baseline run-time when running on a mobile device, with a less than 0.1 decrease in TTS mean opinion score (MOS).
81 - Adrian {L}ancucki 2020
We present FastPitch, a fully-parallel text-to-speech model based on FastSpeech, conditioned on fundamental frequency contours. The model predicts pitch contours during inference. By altering these predictions, the generated speech can be more expres sive, better match the semantic of the utterance, and in the end more engaging to the listener. Uniformly increasing or decreasing pitch with FastPitch generates speech that resembles the voluntary modulation of voice. Conditioning on frequency contours improves the overall quality of synthesized speech, making it comparable to state-of-the-art. It does not introduce an overhead, and FastPitch retains the favorable, fully-parallel Transformer architecture, with over 900x real-time factor for mel-spectrogram synthesis of a typical utterance.
We propose a linear prediction (LP)-based waveform generation method via WaveNet vocoding framework. A WaveNet-based neural vocoder has significantly improved the quality of parametric text-to-speech (TTS) systems. However, it is challenging to effec tively train the neural vocoder when the target database contains massive amount of acoustical information such as prosody, style or expressiveness. As a solution, the approaches that only generate the vocal source component by a neural vocoder have been proposed. However, they tend to generate synthetic noise because the vocal source component is independently handled without considering the entire speech production process; where it is inevitable to come up with a mismatch between vocal source and vocal tract filter. To address this problem, we propose an LP-WaveNet vocoder, where the complicated interactions between vocal source and vocal tract components are jointly trained within a mixture density network-based WaveNet model. The experimental results verify that the proposed system outperforms the conventional WaveNet vocoders both objectively and subjectively. In particular, the proposed method achieves 4.47 MOS within the TTS framework.
Deepspeech was very useful for development IoT devices that need voice recognition. One of the voice recognition systems is deepspeech from Mozilla. Deepspeech is an open-source voice recognition that was using a neural network to convert speech spec trogram into a text transcript. This paper shows the implementation process of speech recognition on a low-end computational device. Development of English-language speech recognition that has many datasets become a good point for starting. The model that used results from pre-trained model that provide by each version of deepspeech, without change of the model that already released, furthermore the benefit of using raspberry pi as a media end-to-end speech recognition device become a good thing, user can change and modify of the speech recognition, and also deepspeech can be standalone device without need continuously internet connection to process speech recognition, and even this paper show the power of Tensorflow Lite can make a significant difference on inference by deepspeech rather than using Tensorflow non-Lite.This paper shows the experiment using Deepspeech version 0.1.0, 0.1.1, and 0.6.0, and there is some improvement on Deepspeech version 0.6.0, faster while processing speech-to-text on old hardware raspberry pi 3 b+.
112 - Mingjian Chen , Xu Tan , Yi Ren 2020
Transformer-based text to speech (TTS) model (e.g., Transformer TTS~cite{li2019neural}, FastSpeech~cite{ren2019fastspeech}) has shown the advantages of training and inference efficiency over RNN-based model (e.g., Tacotron~cite{shen2018natural}) due to its parallel computation in training and/or inference. However, the parallel computation increases the difficulty while learning the alignment between text and speech in Transformer, which is further magnified in the multi-speaker scenario with noisy data and diverse speakers, and hinders the applicability of Transformer for multi-speaker TTS. In this paper, we develop a robust and high-quality multi-speaker Transformer TTS system called MultiSpeech, with several specially designed components/techniques to improve text-to-speech alignment: 1) a diagonal constraint on the weight matrix of encoder-decoder attention in both training and inference; 2) layer normalization on phoneme embedding in encoder to better preserve position information; 3) a bottleneck in decoder pre-net to prevent copy between consecutive speech frames. Experiments on VCTK and LibriTTS multi-speaker datasets demonstrate the effectiveness of MultiSpeech: 1) it synthesizes more robust and better quality multi-speaker voice than naive Transformer based TTS; 2) with a MutiSpeech model as the teacher, we obtain a strong multi-speaker FastSpeech model with almost zero quality degradation while enjoying extremely fast inference speed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا