ﻻ يوجد ملخص باللغة العربية
We present results from a set of simulations using a fully coupled three-dimensional (3D) chemistry-radiation-hydrodynamics model and investigate the effect of transport of chemical species by the large-scale atmospheric flow in hot Jupiter atmospheres. We couple a flexible chemical kinetics scheme to the Met Office Unified Model which enables the study of the interaction of chemistry, radiative transfer and fluid dynamics. We use a newly-released reduced chemical network comprising 30 chemical species that has been specifically developed for application in 3D atmosphere models. We simulate the atmospheres of the well-studied hot Jupiters HD~209458b and HD~189733b which both have dayside--nightside temperature contrasts of several hundred Kelvin and superrotating equatorial jets. We find qualitatively quite different chemical structures between the two planets, particularly for methane (CH$_4$), when advection of chemical species is included. Our results show that consideration of 3D chemical transport is vital in understanding the chemical composition of hot Jupiter atmospheres. 3D mixing leads to significant changes in the abundances of absorbing gas-phase species compared with what would be expected by assuming local chemical equilibrium, or from models including 1D - and even 2D - chemical mixing. We find that CH$_4$, carbon dioxide (CO$_2$) and ammonia (NH$_3$) are particularly interesting as 3D mixing of these species leads to prominent signatures of out-of-equilibrium chemistry in the transmission and emission spectra, detectable with near-future instruments.
Radiative transfer in planetary atmospheres is usually treated in the static limit, i.e., neglecting atmospheric motions. We argue that hot Jupiter atmospheres, with possibly fast (sonic) wind speeds, may require a more strongly coupled treatment, fo
We compute models of the transmission spectra of planets HD 209458b, HD 189733b, and generic hot Jupiters. We examine the effects of temperature, surface gravity, and metallicity for the generic planets as a guide to understanding transmission spectr
We present highlights from a large set of simulations of a hot Jupiter atmosphere, nominally based on HD 209458b, aimed at exploring both the evolution of the deep atmosphere, and the acceleration of the zonal flow or jet. We find the occurrence of a
In this work we study the effect of disequilibrium processes on mixing ratio profiles of neutral species and on the simulated spectra of a hot Jupiter exoplanet that orbits stars of different spectral types. We also address the impact of stellar acti
[Abridged] A key hypothesis in the field of exoplanet atmospheres is the trend of atmospheric thermal structure with planetary equilibrium temperature. We explore this trend and report here the first statistical detection of a transition in the near-