Quantum Mean-Force Kinetic Theory: General Formulation and Application to Electron-Ion Transport in Warm Dense Matter


الملخص بالإنكليزية

We present an approach to extend plasma transport theory into the Warm Dense Matter (WDM) regime characterized by moderate Coulomb coupling and electron degeneracy. It is based on a recently proposed closure of the BBGKY hierarchy that expands in terms of the departure of correlations from their equilibrium value, rather than in terms of the strength of correlations. This kinetic equation contains modifications to the collision term in addition to a second term that models the non-ideal contributions to the equation of state. An explicit collision operator is derived in the semiclassical limit that is similar to that of the Uehling-Uhlenbeck equation, but where scattering is mediated by the potential of mean force (PMF). As a demonstration, we use this collision integral to evaluate temperature and momentum relaxation rates in dense plasmas. We obtain degeneracy- and coupling-dependent Coulomb integrals that take the place of $lnLambda$ in the scattering rates. We additionally find a novel difference in the way in which degeneracy influences momentum relaxation in comparison to temperature relaxation. Finally, we evaluate electron-ion relaxation rates for the case of warm dense deuterium over a range of density and temperature spanning the classical to quantum and weak to strong coupling transitions. Results are compared with the Landau-Spitzer rate and rates obtained from the quantum Landau-Fokker-Planck equation and Lee-More model. We find that the models diverge significantly in the degenerate and moderately coupled regime and attribute this difference to how the various models treat the physics of Pauli blocking, correlations, large-angle scattering, and diffraction.

تحميل البحث