ﻻ يوجد ملخص باللغة العربية
Random lasing is an intriguing phenomenon occurring in disordered structures with optical gain. In such lasers, the scattering of light provides the necessary feedback for lasing action. Because of the light scattering, the random lasing systems emit in all the directions in contrast with the directional emission of the conventional lasers. While this property can be desired in some cases, the control of the emission directionality remains required for most of the applications. Besides, it is well known that the excitation of cavity exciton-polaritons is intrinsically directional. Each wavelength (energy) of the cavity polariton, which is a superposition of an excitonic state and a cavity mode, corresponds to a well-defined propagation direction. We demonstrate in this article that coupling the emission of a 2D random laser with a cavity polaritonic resonance permits to control the direction of emission of the random laser. This results in a directional random lasing whose emission angle with respect to the microcavity axis can be tuned in a large range of angles by varying the cavity detuning. The emission angles reached experimentally in this work are 15.8$^circ$ and 22.4$^circ$.
Propagation of light in a highly scattering medium is among the most fascinating optical effect that everyone experiences on an everyday basis and possesses a number of fundamental problems which have yet to be solved. Conventional wisdom suggests th
Kagome lattices supporting Dirac cone and flatband dispersions are well known as a highly frustrated, two-dimensional lattice system. Particularly the flatbands therein are attracting continuous interest based on their link to topological order, corr
we investigate the transmission of probe laser beam in a coupled-cavity system with polaritons by using standard input-output relation of optical fields, and proposed a theoretical schema for realizing a polariton-based photonic transistor. On accoun
Coupling emitters with nanoresonators is an effective strategy to control light emission at the subwavelength scale with high efficiency. Low-loss dielectric nanoantennas hold particular promise for this purpose, owing to their strong Mie resonances.
We measured the ensemble-averaged spectral correlation functions and statistical distributions of spectral spacing and intensity for lasing modes in weakly scattering systems, and compared them to those of the amplified spontaneous emission spikes. T