ﻻ يوجد ملخص باللغة العربية
We address the problem of shaping deformable plastic materials using non-prehensile actions. Shaping plastic objects is challenging, since they are difficult to model and to track visually. We study this problem, by using kinetic sand, a plastic toy material which mimics the physical properties of wet sand. Inspired by a pilot study where humans shape kinetic sand, we define two types of actions: textit{pushing} the material from the sides and textit{tapping} from above. The chosen actions are executed with a robotic arm using image-based visual servoing. From the current and desired view of the material, we define states based on visual features such as the outer contour shape and the pixel luminosity values. These are mapped to actions, which are repeated iteratively to reduce the image error until convergence is reached. For pushing, we propose three methods for mapping the visual state to an action. These include heuristic methods and a neural network, trained from human actions. We show that it is possible to obtain simple shapes with the kinetic sand, without explicitly modeling the material. Our approach is limited in the types of shapes it can achieve. A richer set of action types and multi-step reasoning is needed to achieve more sophisticated shapes.
This paper proposes a unified vision-based manipulation framework using image contours of deformable/rigid objects. Instead of using human-defined cues, the robot automatically learns the features from processed vision data. Our method simultaneously
Deep reinforcement learning (RL) algorithms can learn complex robotic skills from raw sensory inputs, but have yet to achieve the kind of broad generalization and applicability demonstrated by deep learning methods in supervised domains. We present a
Robotic grasping of 3D deformable objects (e.g., fruits/vegetables, internal organs, bottles/boxes) is critical for real-world applications such as food processing, robotic surgery, and household automation. However, developing grasp strategies for s
Conventional shape sensing techniques using Fiber Bragg Grating (FBG) involve finding the curvature at discrete FBG active areas and integrating curvature over the length of the continuum dexterous manipulator (CDM) for tip position estimation (TPE).
Several model-based and model-free methods have been proposed for the robot trajectory learning task. Both approaches have their benefits and drawbacks. They can usually complement each other. Many research works are trying to integrate some model-ba