ﻻ يوجد ملخص باللغة العربية
In this paper, we establish a coupling lemma for standard families in the setting of piecewise expanding interval maps with countably many branches. Our method merely requires that the expanding map satisfies Chernovs one-step expansion at $q$-scale and eventually covers a magnet interval. Therefore, our approach is particularly powerful for maps whose inverse Jacobian has low regularity and those who does not satisfy the big image property. The main ingredients of our coupling method are two crucial lemmas: the growth lemma in terms of the characteristic $cZ$ function and the covering ratio lemma over the magnet interval. We first prove the existence of an absolutely continuous invariant measure. What is more important, we further show that the growth lemma enables the liftablity of the Lebesgue measure to the associated Hofbauer tower, and the resulting invariant measure on the tower admits a decomposition of Pesin-Sinai type. Furthermore, we obtain the exponential decay of correlations and the almost sure invariance principle (which is a functional version of the central limit theorem). For the first time, we are able to make a direct relation between the mixing rates and the $cZ$ function, see (ref{equ:totalvariation1}). The novelty of our results relies on establishing the regularity of invariant density, as well as verifying the stochastic properties for a large class of unbounded observables. Finally, we verify our assumptions for several well known examples that were previously studied in the literature, and unify results to these examples in our framework.
We consider families of dynamics that can be described in terms of Perron-Frobenius operators with exponential mixing properties. For piecewise C^2 expanding interval maps we rigorously prove continuity properties of the drift J(l) and of the diffusi
For general quantum systems the semiclassical behaviour of eigenfunctions in relation to the ergodic properties of the underlying classical system is quite difficult to understand. The Wignerfunctions of eigenstates converge weakly to invariant measu
The goal of this paper is to construct invariant dynamical objects for a (not necessarily invertible) smooth self map of a compact manifold. We prove a result that takes advantage of differences in rates of expansion in the terms of a sheaf cohomolog
We show that for any $lambda in mathbb{C}$ with $|lambda|<1$ there exists an analytic expanding circle map such that the eigenvalues of the associated transfer operator (acting on holomorphic functions) are precisely the nonnegative powers of $lambda
We study the topological properties of attractors of Iterated Function Systems (I.F.S.) on the real line, consisting of affine maps of homogeneous contraction ratio. These maps define what we call a second generation I.F.S.: they are uncountably many