ﻻ يوجد ملخص باللغة العربية
It is well-known that online behavior is long-tailed, with most cascaded actions being short and a few being very long. A prominent drawback in generative models for online events is the inability to describe unpopular items well. This work addresses these shortcomings by proposing dual mixture self-exciting processes to jointly learn from groups of cascades. We first start from the observation that maximum likelihood estimates for content virality and influence decay are separable in a Hawkes process. Next, our proposed model, which leverages a Borel mixture model and a kernel mixture model, jointly models the unfolding of a heterogeneous set of cascades. When applied to cascades of the same online items, the model directly characterizes their spread dynamics and supplies interpretable quantities, such as content virality and content influence decay, as well as methods for predicting the final content popularities. On two retweet cascade datasets -- one relating to YouTube videos and the second relating to controversial news articles -- we show that our models capture the differences between online items at the granularity of items, publishers and categories. In particular, we are able to distinguish between far-right, conspiracy, controversial and reputable online news articles based on how they diffuse through social media, achieving an F1 score of 0.945. On holdout datasets, we show that the dual mixture model provides, for reshare diffusion cascades especially unpopular ones, better generalization performance and, for online items, accurate item popularity predictions.
Epidemic models and self-exciting processes are two types of models used to describe diffusion phenomena online and offline. These models were originally developed in different scientific communities, and their commonalities are under-explored. This
Modeling online discourse dynamics is a core activity in understanding the spread of information, both offline and online, and emergent online behavior. There is currently a disconnect between the practitioners of online social media analysis -- usua
We propose a new multifractional stochastic process which allows for self-exciting behavior, similar to what can be seen for example in earthquakes and other self-organizing phenomena. The process can be seen as an extension of a multifractional Brow
The paper discusses multivariate self- and cross-exciting processes. We define a class of multivariate point processes via their corresponding stochastic intensity processes that are driven by stochastic jumps. Essentially, there is a jump in an inte
Recently there have been many research efforts in developing generative models for self-exciting point processes, partly due to their broad applicability for real-world applications. However, rarely can we quantify how well the generative model captu