ﻻ يوجد ملخص باللغة العربية
The sensitive correlation between optical parameters and strain in Mo$S_2$ results in a totally different approach to tune the optical properties. Usually, an external source of strain is employed to monitor the optical and vibrational properties of a material. It is always challenging to have a precise control over the strain and its consequences on material properties. Here, we report the presence of a compressive strain in Mo$S_2$ crystalline powder and nanosheets obtained via the process of ball-milling and probe sonication. The diffraction peaks in the X-ray diffraction pattern shift to higher 2$theta$ value implying a compressive strain that increases with the processing time. The absorption spectra, photoluminescence and Raman modes are blue-shifted w.r.t the bulk unprocessed sample. The observed blue-shift is attributed to the presence of compressive strain in the samples. Whereas in thin nano-sheets of Mo$S_2$, it is very likely that both quantum confinement as well as strain result in the observed blue-shift. These results indicate that by optimizing the processing conditions and/or time, a strain of desired amount and hence tunable shift in optical properties of material can be achieved.
We investigate the resonance energy transfer (RET) rate between two quantum emitters near a suspended graphene sheet in vacuum under the influence of an external magnetic field. We perform the analysis for low and room temperatures and show that, due
The tailoring of the physical properties of semiconductor nanomaterials by strain has been gaining increasing attention over the last years for a wide range of applications such as electronics, optoelectronics and photonics. The ability to introduce
We demonstrate reversible strain-tuning of a quantum dot strongly coupled to a photonic crystal cavity. We observe an average redshift of 0.45 nm for quantum dots located inside the cavity membrane, achieved with an electric field of 15 kV/cm applied
In a charge tunable device, we investigate the fine structure splitting of neutral excitons in single long-wavelength (1.1mu m < lambda < 1.3 mu m) InGaAs quantum dots as a function of external uniaxial strain. Nominal fine structure splittings betwe
Polarization-dependent two-dimensional Fourier-transform spectroscopy (2DFTS) is performed on excitons in strained bulk GaAs layers probing the coherent response for differing amounts of strain. Biaxial tensile strain lifts the degeneracy of heavy-ho