ﻻ يوجد ملخص باللغة العربية
Academic search engines allow scientists to explore related work relevant to a given query. Often, the user is also aware of the aspect to retrieve a relevant document. In such cases, existing search engines can be used by expanding the query with terms describing that aspect. However, this approach does not guarantee good results since plain keyword matches do not always imply relevance. To address this issue, we define and solve a novel academic search task, called aspect-based retrieval, which allows the user to specify the aspect along with the query to retrieve a ranked list of relevant documents. The primary idea is to estimate a language model for the aspect as well as the query using a domain-specific knowledge base and use a mixture of the two to determine the relevance of the article. Our evaluation of the results over the Open Research Corpus dataset shows that our method outperforms keyword-based expansion of query with aspect with and without relevance feedback.
Since its emergence in the 1990s the World Wide Web (WWW) has rapidly evolved into a huge mine of global information and it is growing in size everyday. The presence of huge amount of resources on the Web thus poses a serious problem of accurate sear
We implemented and evaluated a two-stage retrieval method for personalized academic search in which the initial search results are re-ranked using an author-topic profile. In academic search tasks, the users own data can help optimizing the ranking o
Within a search session users often apply different search terms, as well as different variations and combinations of them. This way, they want to make sure that they find relevant information for different stages and aspects of their information tas
Information overload is a prevalent challenge in many high-value domains. A prominent case in point is the explosion of the biomedical literature on COVID-19, which swelled to hundreds of thousands of papers in a matter of months. In general, biomedi
Aspect based sentiment analysis, predicting sentiment polarity of given aspects, has drawn extensive attention. Previous attention-based models emphasize using aspect semantics to help extract opinion features for classification. However, these works