ﻻ يوجد ملخص باللغة العربية
We have reviewed some results on quantized shuffling, and in particular, the grading and structure of this algebra. In parallel, we have summarized certain details about classical shuffle algebras, including Lyndon words (primes) and the construction of bases of classical shuffle algebras in terms of Lyndon words. We have explained how to adapt this theory to the construction of bases of quantum group algebras in terms of Lyndon words. This method has a limited application to the specific case of the quantum group parameter being a root of unity, with the requirement that specialization to the root of unity is non-restricted. As an additional, applied part of this work, we have implemented a Wolfram Mathematica package with functions for quantum shuffle multiplication and constructions of bases in terms of Lyndon words.
We provide a construction of global bases for quantum Borcherds-Bozec algebras and their integrable highest weight representations.
In this paper, we extend the notion of Lyndon word to transfinite words. We prove two main results. We first show that, given a transfinite word, there exists a unique factorization in Lyndon words that are densely non-increasing, a relaxation of the
We show that except in several cases conjugacy classes of classical Weyl groups $W(B_n)$ and $W(D_n)$ are of type {rm D}. We prove that except in three cases Nichols algebras of irreducible Yetter-Drinfeld ({rm YD} in short )modules over the classica
A generalized lexicographical order on infinite words is defined by choosing for each position a total order on the alphabet. This allows to define generalized Lyndon words. Every word in the free monoid can be factorized in a unique way as a nonincr
In this paper we compare two finite words $u$ and $v$ by the lexicographical order of the infinite words $u^omega$ and $v^omega$. Informally, we say that we compare $u$ and $v$ by the infinite order. We show several properties of Lyndon words express