ﻻ يوجد ملخص باللغة العربية
In this paper, we aim to develop a predictive model for solar radial $p$-mode line profiles in the velocity spectrum. Unlike the approach favoured by prior studies, this model is not described by free parameters and we do not use fitting procedures to match the observations. Instead, we use an analytical turbulence model coupled with constraints extracted from a 3D hydrodynamic simulation of the solar atmosphere. We then compare the resulting asymmetries with their observationally derived counterpart. We find that stochastic excitation localised beneath the mode upper turning point generates negative asymmetry for $ u < u_text{max}$ and positive asymmetry for $ u > u_text{max}$. On the other hand, stochastic excitation localised above this limit generates negative asymmetry throughout the $p$-mode spectrum. As a result of the spatial extent of the source of excitation, both cases play a role in the total observed asymmetries. By taking this spatial extent into account and using a realistic description of the spectrum of turbulent kinetic energy, both a qualitative and quantitative agreement can be found with solar observations perfoemed by the GONG network. We also find that the impact of the correlation between acoustic noise and oscillation is negligible for mode asymmetry in the velocity spectrum.
We report results of a spectropolarimetric and photometric monitoring of the weak-line T Tauri star LkCa4 within the MaTYSSE programme, involving ESPaDOnS at the Canada-France-Hawaii Telescope. Despite an age of only 2Myr and a similarity with protot
Solar activity in all its varied manifestations is driven by the magnetic field. Particularly important for many purposes are two global quantities, the Suns total and open magnetic flux, which can be computed from sunspot number records using models
We report the results of our spectropolarimetric monitoring of the weak-line T-Tauri stars (wTTSs) Par 1379 and Par 2244, within the MaTYSSE (Magnetic Topologies of Young Stars and the Survival of close-in giant Exoplanets) programme. Both stars are
Non-radial modes are excited in classical pulsators, both in Cepheids and in RR Lyrae stars. Firm evidence come from the first overtone pulsators, in which additional shorter period mode is detected with characteristic period ratio falling in between
We present the results of complex seismic analysis of the prototype star SX Phoenicis. This analysis consists of a simultaneous fitting of the two radial-mode frequencies, the corresponding values of the bolometric flux amplitude (the parameter $f$)