ﻻ يوجد ملخص باللغة العربية
The odd-$Z$ $^{251}$Md nucleus was studied using combined $gamma$-ray and conversion-electron in-beam spectroscopy. Besides the previously observed rotational band based on the $[521]1/2^-$ configuration, another rotational structure has been identified using $gamma$-$gamma$ coincidences. The use of electron spectroscopy allowed the rotational bands to be observed over a larger rotational frequency range. Using the transition intensities that depend on the gyromagnetic factor, a $[514]7/2^-$ single-particle configuration has been inferred for this band, i.e., the ground-state band. A physical background that dominates the electron spectrum with an intensity of $simeq$ 60% was well reproduced by simulating a set of unresolved excited bands. Moreover, a detailed analysis of the intensity profile as a function of the angular momentum provided a method for deriving the orbital gyromagnetic factor, namely $g_K = 0.69^{+0.19}_{-0.16}$ for the ground-state band. The odd-$Z$ $^{249}$Md was studied using $gamma$-ray in-beam spectroscopy. Evidence for octupole correlations resulting from the mixing of the $Delta l = Delta j = 3$ $[521]3/2^-$ and $[633]7/2^+$ Nilsson orbitals were found in both $^{249,251}$Md. A surprising similarity of the $^{251}$Md ground-state band transition energies with those of the excited band of $^{255}$Lr has been discussed in terms of identical bands. Skyrme-Hartree-Fock-Bogoliubov calculations were performed to investigate the origin of the similarities between these bands.
Excited states in the very neutron-rich nuclei 35Mg and 33Na were populated in the fragmentation of a 38Si projectile beam on a Be target at 83 MeV/u beam energy. We report on the first observation of gamma-ray transitions in 35Mg, the odd-N neighbor
Excited states in the neutron-rich N=38,36 nuclei uc{60}{Ti} and uc{58}{Ti} were populated in nucleon-removal reactions from uc{61}{V} projectiles at 90~MeV/nucleon. The gamma-ray transitions from such states in these Ti isotopes were detected wit
Decay spectroscopy of the odd-proton nuclei $^{249}$Md and $^{251}$Md has been performed. High-$K$ isomeric states were identified for the first time in these two nuclei through their electromagnetic decay. An isomeric state with a half-life of $2.4(
The fusion and transfer induced fission reaction $^{9}$Be($^{238}$U,~f) with 6.2 MeV/u beam energy, using a unique setup consisting of AGATA, VAMOS++ and EXOGAM detectors, was used to populate through the fission process and study the neutron-rich $^
Background: In the island of inversion, ground states of neutron-rich $sd$-shell nuclei exhibit strong admixtures of intruder configurations from the $fp$ shell. The nucleus $^{30}$Mg, located at the boundary of the island of inversion, serves as a c