ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on Heavy Quarkonium in Extreme Conditions

72   0   0.0 ( 0 )
 نشر من قبل Yuki Asakawa
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Masayuki Asakawa




اسأل ChatGPT حول البحث

In a recent paper (arXiv:1912.02253), Rothkopf claims that the Bryan method, which is widely used to obtain the solution in the maximum entropy method and makes use of the singular value decomposition of a matrix, limits the search space for the solution. He even presents a counterexample to the Bryan method. In this comment, we first recapitulate the mathematical basis of the Bryan method, and reconfirm that it makes use of no approximations and that it is therefore mathematically rigorous. In the second part, we explicitly show that Rothkopfs ``counterexample actually does not constitute a counterexample on the basis of the definition of singular value decomposition itself.



قيم البحث

اقرأ أيضاً

141 - Gouranga C. Nayak 2005
We discuss factorization in heavy quarkonium production in high energy collisions using NRQCD. Infrared divergences at NNLO are not matched by conventional NRQCD matrix elements. However, we show that gauge invariance and factorization require that c onventional NRQCD production matrix elements be modified to include Wilson lines or non-abelian gauge links. With this modification NRQCD factorization for heavy quarkonium production is restored at NNLO.
We summarize recent developments in heavy quarkonium spectroscopy, relying on previous review articles for the bulk of material available prior to mid-2010. This note is intended as a mini-review to appear in the 2012 Review of Particle Physics published by the Particle Data Group.
The near threshold photo or electroproduction of heavy vector quarkonium off the proton is studied in quantum chromodynamics. Similar to the high-energy limit, the production amplitude can be factorized in terms of gluonic Generalized Parton Distribu tions and the quarkonium distribution amplitude. At the threshold, the threshold kinematics has a large skewness parameter $xi$, leading to the dominance of the spin-2 contribution over higher-spin twist-2 operators. Thus threshold production data are useful to extract the gluonic gravitational form factors, allowing studying the gluonic contributions to the quantum anomalous energy, mass radius, spin and mechanical pressure in the proton. We use the recent GlueX data on the $J/psi$ photoproduction to illustrate the potential physics impact from the high-precision data from future JLab 12 GeV and EIC physics program.
We summarise the perspectives on heavy-quarkonium production at the LHC, both for proton-proton and heavy-ion runs, as emanating from the round table held at the HLPW 2008 Conference. The main topics are: present experimental and theoretical knowledg e, experimental capabilities, open questions, recent theoretical advances and potentialities linked to some new observables.
We consider the potential-model approach for obtaining the spectrum of charmonium and bottomonium, replacing the usual gluon propagator by one obtained from lattice simulations. The resulting spectra are compared to the corresponding ones in the Corn ell-potential case. We also estimate the interquark distance in both cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا