ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond Age: Urgency of Information for Timeliness Guarantee in Status Update Systems

117   0   0.0 ( 0 )
 نشر من قبل Sheng Zhou
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Timely status updating is crucial for future applications that involve remote monitoring and control, such as autonomous driving and Industrial Internet of Things (IIoT). Age of Information (AoI) has been proposed to measure the freshness of status updates. However, it is incapable of capturing critical systematic context information that indicates the time-varying importance of status information, and the dynamic evolution of status. In this paper, we propose a context-based metric, namely the Urgency of Information (UoI), to evaluate the timeliness of status updates. Compared to AoI, the new metric incorporates both time-varying context information and dynamic status evolution, which enables the analysis on context-based adaptive status update schemes, as well as more effective remote monitoring and control. The minimization of average UoI for a status update terminal with an updating frequency constraint is investigated, and an update-index-based adaptive scheme is proposed. Simulation results show that the proposed scheme achieves a near-optimal performance with a low computational complexity.



قيم البحث

اقرأ أيضاً

427 - Maice Costa , Marian Codreanu , 2015
We consider a communication system in which status updates arrive at a source node, and should be transmitted through a network to the intended destination node. The status updates are samples of a random process under observation, transmitted as pac kets, which also contain the time stamp to identify when the sample was generated. The age of the information available to the destination node is the time elapsed since the last received update was generated. In this paper, we model the source-destination link using queuing theory, and we assume that the time it takes to successfully transmit a packet to the destination is an exponentially distributed service time. We analyze the age of information in the case that the source node has the capability to manage the arriving samples, possibly discarding packets in order to avoid wasting network resources with the transmission of stale information. In addition to characterizing the average age, we propose a new metric, called peak age, which provides information about the maximum value of the age, achieved immediately before receiving an update.
As 5G and Internet-of-Things (IoT) are deeply integrated into vertical industries such as autonomous driving and industrial robotics, timely status update is crucial for remote monitoring and control. In this regard, Age of Information (AoI) has been proposed to measure the freshness of status updates. However, it is just a metric changing linearly with time and irrelevant of context-awareness. We propose a context-based metric, named as Urgency of Information (UoI), to measure the nonlinear time-varying importance and the non-uniform context-dependence of the status information. This paper first establishes a theoretical framework for UoI characterization and then provides UoI-optimal status updating and user scheduling schemes in both single-terminal and multi-terminal cases. Specifically, an update-index-based scheme is proposed for a single-terminal system, where the terminal always updates and transmits when its update index is larger than a threshold. For the multi-terminal case, the UoI of the proposed scheduling scheme is proven to be upper-bounded and its decentralized implementation by Carrier Sensing Multiple Access with Collision Avoidance (CSMA/CA) is also provided. In the simulations, the proposed updating and scheduling schemes notably outperform the existing ones such as round robin and AoI-optimal schemes in terms of UoI, error-bound violation and control system stability.
We consider the age of information in a multicast network where there is a single source node that sends time-sensitive updates to $n$ receiver nodes. Each status update is one of two kinds: type I or type II. To study the age of information experien ced by the receiver nodes for both types of updates, we consider two cases: update streams are generated by the source node at-will and update streams arrive exogenously to the source node. We show that using an earliest $k_1$ and $k_2$ transmission scheme for type I and type II updates, respectively, the age of information of both update streams at the receiver nodes can be made a constant independent of $n$. In particular, the source node transmits each type I update packet to the earliest $k_1$ and each type II update packet to the earliest $k_2$ of $n$ receiver nodes. We determine the optimum $k_1$ and $k_2$ stopping thresholds for arbitrary shifted exponential link delays to individually and jointly minimize the average age of both update streams and characterize the pareto optimal curve for the two ages.
In a wireless network that conveys status updates from sources (i.e., sensors) to destinations, one of the key issues studied by existing literature is how to design an optimal source sampling strategy on account of the communication constraints whic h are often modeled as queues. In this paper, an alternative perspective is presented -- a novel status-aware communication scheme, namely emph{parallel communications}, is proposed which allows sensors to be communication-agnostic. Specifically, the proposed scheme can determine, based on an online prediction functionality, whether a status packet is worth transmitting considering both the network condition and status prediction, such that sensors can generate status packets without communication constraints. We evaluate the proposed scheme on a Software-Defined-Radio (SDR) test platform, which is integrated with a collaborative autonomous driving simulator, i.e., Simulation-of-Urban-Mobility (SUMO), to produce realistic vehicle control models and road conditions. The results show that with online status predictions, the channel occupancy is significantly reduced, while guaranteeing low status recovery error. Then the framework is applied to two scenarios: a multi-density platooning scenario, and a flight formation control scenario. Simulation results show that the scheme achieves better performance on the network level, in terms of keeping the minimum safe distance in both vehicle platooning and flight control.
A large body of applications that involve monitoring, decision making, and forecasting require timely status updates for their efficient operation. Age of Information (AoI) is a newly proposed metric that effectively captures this requirement. Recent research on the subject has derived AoI optimal policies for the generation of status updates and AoI optimal packet queueing disciplines. Unlike previous research we focus on low-end devices that typically support monitoring applications in the context of the Internet of Things. We acknowledge that these devices host a diverse set of applications some of which are AoI sensitive while others are not. Furthermore, due to their limited computational resources they typically utilize a simple First-In First-Out (FIFO) queueing discipline. We consider the problem of optimally controlling the status update generation process for a system with a source-destination pair that communicates via a wireless link, whereby the source node is comprised of a FIFO queue and two applications, one that is AoI sensitive and one that is not. We formulate this problem as a dynamic programming problem and utilize the framework of Markov Decision Processes to derive optimal policies for the generation of status update packets. Due to the lack of comparable methods in the literature, we compare the derived optimal policies against baseline policies, such as the zero-wait policy, and investigate the performance of all policies for a variety of network configurations. Results indicate that existing status update policies fail to capture the trade-off between frequent generation of status updates and queueing delay and thus perform poorly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا