The magnetic white dwarfs (MWDs) are found either isolated or in interacting binaries. They divide into two groups: a high field group (0.1-1,000MegaGauss) comprising some 13% of all white dwarfs (WDs), and a low field group (B<0.1MG) whose incidence is currently under investigation. The situation may be similar in magnetic binaries because the bright accretion discs in low field systems hide the photosphere of their WDs thus preventing the study of their magnetic fields strength and structure. Considerable research has been devoted to the vexed question on the origin of magnetic fields. One hypothesis is that WD magnetic fields are of fossil origin. The other is that magnetic fields arise from binary interaction, through differential rotation, during common envelope evolution. The recently discovered population of hot, carbon-rich WDs exhibiting an incidence of magnetism of up to about 70% and a variability from a few minutes to a couple of days may support the merging binary hypothesis. Several studies have raised the possibility of the detection of planets around MWDs. Rocky planets may be discovered by the detection of anomalous atmospheric heating of the MWD. Planetary remains have recently revealed themselves in the atmospheres of about 25% of WDs that are polluted by elements such as Ca, Si, and often also Mg, Fe, Na. This pollution has been explained by ongoing accretion of planetary debris. The study of isolated and accreting MWDs is likely to continue to yield exciting discoveries for many years to come.