ترغب بنشر مسار تعليمي؟ اضغط هنا

Objective Social Choice: Using Auxiliary Information to Improve Voting Outcomes

150   0   0.0 ( 0 )
 نشر من قبل Silviu Pitis
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

How should one combine noisy information from diverse sources to make an inference about an objective ground truth? This frequently recurring, normative question lies at the core of statistics, machine learning, policy-making, and everyday life. It has been called combining forecasts, meta-analysis, ensembling, and the MLE approach to voting, among other names. Past studies typically assume that noisy votes are identically and independently distributed (i.i.d.), but this assumption is often unrealistic. Instead, we assume that votes are independent but not necessarily identically distributed and that our ensembling algorithm has access to certain auxiliary information related to the underlying model governing the noise in each vote. In our present work, we: (1) define our problem and argue that it reflects common and socially relevant real world scenarios, (2) propose a multi-arm bandit noise model and count-based auxiliary information set, (3) derive maximum likelihood aggregation rules for ranked and cardinal votes under our noise model, (4) propose, alternatively, to learn an aggregation rule using an order-invariant neural network, and (5) empirically compare our rules to common voting rules and naive experience-weighted modifications. We find that our rules successfully use auxiliary information to outperform the naive baselines.



قيم البحث

اقرأ أيضاً

Voting rules may fail to implement the will of the society when only some voters actively participate, and/or in the presence of sybil (fake or duplicate) voters. Here we aim to address social choice in the presence of sybils and voter abstention. To do so we assume the status-quo (Reality) as an ever-present distinguished alternative, and study Reality Enforcing voting rules, which add virtual votes in support of the status-quo. We measure the tradeoff between safety and liveness (the ability of active honest voters to maintain/change the status-quo, respectively) in a variety of domains, and show that the Reality Enforcing voting rule is optimal in this respect.
We discuss the connection between computational social choice (comsoc) and computational complexity. We stress the work so far on, and urge continued focus on, two less-recognized aspects of this connection. Firstly, this is very much a two-way stree t: Everyone knows complexity classification is used in comsoc, but we also highlight benefits to complexity that have arisen from its use in comsoc. Secondly, more subtle, less-known complexity tools often can be very productively used in comsoc.
Any community in which membership is optional may eventually break apart, or fork. For example, forks may occur in political parties, business partnerships, social groups, cryptocurrencies, and federated governing bodies. Forking is typically the pro duct of informal social processes or the organized action of an aggrieved minority, and it is not always amicable. Forks usually come at a cost, and can be seen as consequences of collective decisions that destabilize the community. Here, we provide a social choice setting in which agents can report preferences not only over a set of alternatives, but also over the possible forks that may occur in the face of disagreement. We study this social choice setting, concentrating on stability issues and concerns of strategic agent behavior.
Agent-based modeling (ABM) is a powerful paradigm to gain insight into social phenomena. One area that ABM has rarely been applied is coalition formation. Traditionally, coalition formation is modeled using cooperative game theory. In this paper, a h euristic algorithm is developed that can be embedded into an ABM to allow the agents to find coalition. The resultant coalition structures are comparable to those found by cooperative game theory solution approaches, specifically, the core. A heuristic approach is required due to the computational complexity of finding a cooperative game theory solution which limits its application to about only a score of agents. The ABM paradigm provides a platform in which simple rules and interactions between agents can produce a macro-level effect without the large computational requirements. As such, it can be an effective means for approximating cooperative game solutions for large numbers of agents. Our heuristic algorithm combines agent-based modeling and cooperative game theory to help find agent partitions that are members of a games core solution. The accuracy of our heuristic algorithm can be determined by comparing its outcomes to the actual core solutions. This comparison achieved by developing an experiment that uses a specific example of a cooperative game called the glove game. The glove game is a type of exchange economy game. Finding the traditional cooperative game theory solutions is computationally intensive for large numbers of players because each possible partition must be compared to each possible coalition to determine the core set; hence our experiment only considers games of up to nine players. The results indicate that our heuristic approach achieves a core solution over 90% of the time for the games considered in our experiment.
India accounts for 11% of maternal deaths globally where a woman dies in childbirth every fifteen minutes. Lack of access to preventive care information is a significant problem contributing to high maternal morbidity and mortality numbers, especiall y in low-income households. We work with ARMMAN, a non-profit based in India, to further the use of call-based information programs by early-on identifying women who might not engage on these programs that are proven to affect health parameters positively.We analyzed anonymized call-records of over 300,000 women registered in an awareness program created by ARMMAN that uses cellphone calls to regularly disseminate health related information. We built robust deep learning based models to predict short term and long term dropout risk from call logs and beneficiaries demographic information. Our model performs 13% better than competitive baselines for short-term forecasting and 7% better for long term forecasting. We also discuss the applicability of this method in the real world through a pilot validation that uses our method to perform targeted interventions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا