ﻻ يوجد ملخص باللغة العربية
Classical and more recently deep computer vision methods are optimized for visible spectrum images, commonly encoded in grayscale or RGB colorspaces acquired from smartphones or cameras. A more uncommon source of images exploited in the remote sensing field are satellite and aerial images. However, the development of pattern recognition approaches for these data is relatively recent, mainly due to the limited availability of this type of images, as until recently they were used exclusively for military purposes. Access to aerial imagery, including spectral information, has been increasing mainly due to the low cost of drones, cheapening of imaging satellite launch costs, and novel public datasets. Usually remote sensing applications employ computer vision techniques strictly modeled for classification tasks in closed set scenarios. However, real-world tasks rarely fit into closed set contexts, frequently presenting previously unknown classes, characterizing them as open set scenarios. Focusing on this problem, this is the first paper to study and develop semantic segmentation techniques for open set scenarios applied to remote sensing images. The main contributions of this paper are: 1) a discussion of related works in open set semantic segmentation, showing evidence that these techniques can be adapted for open set remote sensing tasks; 2) the development and evaluation of a novel approach for open set semantic segmentation. Our method yielded competitive results when compared to closed set methods for the same dataset.
Semantic segmentation in very high resolution (VHR) aerial images is one of the most challenging tasks in remote sensing image understanding. Most of the current approaches are based on deep convolutional neural networks (DCNNs). However, standard co
Semantic segmentation for aerial imagery is a challenging and important problem in remotely sensed imagery analysis. In recent years, with the success of deep learning, various convolutional neural network (CNN) based models have been developed. Howe
We extend panoptic segmentation to the open-world and introduce an open-set panoptic segmentation (OPS) task. This task requires performing panoptic segmentation for not only known classes but also unknown ones that have not been acknowledged during
Training Convolutional Neural Networks (CNNs) for very high resolution images requires a large quantity of high-quality pixel-level annotations, which is extremely labor- and time-consuming to produce. Moreover, professional photo interpreters might
Existing Earth Vision datasets are either suitable for semantic segmentation or object detection. In this work, we introduce the first benchmark dataset for instance segmentation in aerial imagery that combines instance-level object detection and pix