ترغب بنشر مسار تعليمي؟ اضغط هنا

Angular momentum profiles of Class 0 protostellar envelopes

79   0   0.0 ( 0 )
 نشر من قبل Mathilde Gaudel
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[abridged] Understanding how the infalling gas redistribute most of its initial angular momentum inherited from prestellar cores before reaching the stellar embryo is a key question. Disk formation has been naturally considered as a possible solution to this angular momentum problem. However, how the initial angular momentum of protostellar cores is distributed and evolves during the main accretion phase and the beginning of disk formation has largely remained unconstrained up to now. In the framework of the IRAM CALYPSO survey, we used high dynamic range C$^{18}$O (2-1) and N$_2$H$^+$ (1-0) observations to quantify the distribution of specific angular momentum along the equatorial axis in a sample of 12 Class 0 protostellar envelopes from scales ~50 to 10000 au. The radial distributions of specific angular momentum in the CALYPSO sample suggest two distinct regimes within protostellar envelopes: the specific angular momentum decreases as $j propto r^{1.6 pm 0.2}$ down to ~1600 au and then tends to become relatively constant around 6 $times$ 10$^{-4}$ km s$^{-1}$ pc down to ~50 au. The values of specific angular momentum measured in the inner Class 0 envelopes, namely that of the material directly involved in the star formation process ($<$1600 au), is on the same order of magnitude as what is inferred in small T-Tauri disks. Thus, disk formation appears to be a direct consequence of angular momentum conservation during the collapse. Our analysis reveals a dispersion of the directions of velocity gradients at envelope scales $>$1600 au, suggesting that they may not be related to rotational motions of the envelopes. We conclude that the specific angular momentum observed at these scales could find its origin in core-forming motions (infall, turbulence) or trace an imprint of the initial conditions for the formation of protostellar cores.



قيم البحث

اقرأ أيضاً

We estimate the levels of turbulence in the envelopes of Class 0 and I protostars using a model based on measurements of the peak separation of double-peaked asymmetric line profiles. We use observations of 20 protostars of both Class 0 and I taken i n the HCO+ (J=3-2) line that show the classic double-peaked profile. We find that some Class 0 sources show high levels of turbulence whilst others demonstrate much lower levels. In Class I protostars we find predominantly low levels of turbulence. The observations are consistent with a scenario in which Class 0 protostars form in a variety of environments and subsequently evolve into Class I protostars. The data do not appear to be consistent with a recently proposed scenario in which Class 0 protostars can only form in extreme environments.
Through the magnetic braking and the launching of protostellar outflows, magnetic fields play a major role in the regulation of angular momentum in star formation, which directly impacts the formation and evolution of protoplanetary disks and binary systems. The aim of this paper is to quantify those phenomena in the presence of non-ideal magnetohydrodynamics effects, namely the Ohmic and ambipola r diffusion. We perform three-dimensional simulations of protostellar collapses varying the mass of the prestellar dense core, the thermal support (the $alpha$ ratio) and the dust grain size-distribu tion. The mass mostly influences the magnetic braking in the pseudo-disk, while the thermal support impacts the accretion rate and hence the properties of the disk. Removing the grains smaller than 0. 1 $mu$m in the Mathis, Rumpl, Nordsieck (MRN) distribution enhances the ambipolar diffusion coefficient. Similarly to previous studies, we find that this change in the distribution reduces the magnet ic braking with an impact on the disk. The outflow is also significantly weakened. In either case, the magnetic braking largely dominates the outflow as a process to remove the angular momentum from t he disk. Finally, we report a large ionic precursor to the outflow with velocities of several km s$^{-1}$, which may be observable.
117 - Xuepeng Chen 2013
We present high angular resolution 1.3 mm and 850 um dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/mu ltiple systems. The median angular resolution in the survey is 2.5 arcsec, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64+/-0.08 and 0.91+/-0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I YSOs, and approximately three (for MF) and four (for CSF) times larger than the values found among MS stars, with a similar range of separations. Furthermore, the observed fraction of high order multiple systems to binary systems in Class 0 protostars (0.50+/-0.09) is also larger than the fractions found in Class I YSOs (0.31+/-0.07) and MS stars (< 0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary systems shows a general trend in which companion star fraction increases with decreasing companion separation. We find that 67%+/-8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation.
We present the results of a suite of numerical simulations designed to explore the origin of the angular momenta of protostellar cores. Using the hydrodynamic grid code emph{Athena} with a sink implementation, we follow the formation of protostellar cores and protostars (sinks) from the subvirial collapse of molecular clouds on larger scales to investigate the range and relative distribution of core properties. We find that the core angular momenta are relatively unaffected by large-scale rotation of the parent cloud; instead, we infer that angular momenta are mainly imparted by torques between neighboring mass concentrations and exhibit a log-normal distribution. Our current simulation results are limited to size scales $sim 0.05$~pc ($sim 10^4 rm AU$), but serve as first steps toward the ultimate goal of providing initial conditions for higher-resolution studies of core collapse to form protoplanetary disks.
Building on our previous hydrodynamic study of the angular momenta of cloud cores formed during gravitational collapse of star-forming molecular gas in our previous work, we now examine core properties assuming ideal magnetohydrodynamics (MHD). Using the same sink-patch implementation for the emph{Athena} MHD code, we characterize the statistical properties of cores, including the mass accretion rates, specific angular momenta, and alignments between the magnetic field and the spin axis of the core on the $0.1 mathrm{pc}$ scale. Our simulations, which reproduce the observed relation between magnetic field strength and gas density, show that magnetic fields can help collimate low density flows and help seed the locations of filamentary structures. Consistent with our previous purely hydrodynamic simulations, stars (sinks) form within the heterogeneous environments of filaments, such that accretion onto cores is highly episodic leading to short-term variability but no long-term monotonic growth of the specific angular momenta. With statistical characterization of protostellar cores properties and behaviors, we aim to provide a starting point for building more realistic and self-consistent disk formation models, helping to address whether magnetic fields can prevent the development of (large) circumstellar disks in the ideal MHD limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا