ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Teaching of Temporal Logic Formulas to Learners with Preferences

74   0   0.0 ( 0 )
 نشر من قبل Zhe Xu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Machine teaching is an algorithmic framework for teaching a target hypothesis via a sequence of examples or demonstrations. We investigate machine teaching for temporal logic formulas -- a novel and expressive hypothesis class amenable to time-related task specifications. In the context of teaching temporal logic formulas, an exhaustive search even for a myopic solution takes exponential time (with respect to the time span of the task). We propose an efficient approach for teaching parametric linear temporal logic formulas. Concretely, we derive a necessary condition for the minimal time length of a demonstration to eliminate a set of hypotheses. Utilizing this condition, we propose a myopic teaching algorithm by solving a sequence of integer programming problems. We further show that, under two notions of teaching complexity, the proposed algorithm has near-optimal performance. The results strictly generalize the previous results on teaching preference-based version space learners. We evaluate our algorithm extensively under a variety of learner types (i.e., learners with different preference models) and interactive protocols (e.g., batched and adaptive). The results show that the proposed algorithms can efficiently teach a given target temporal logic formula under various settings, and that there are significant gains of teaching efficacy when the teacher adapts to the learners current hypotheses or uses oracles.



قيم البحث

اقرأ أيضاً

In this note we consider the problem of introducing variables in temporal logic programs under the formalism of Temporal Equilibrium Logic (TEL), an extension of Answer Set Programming (ASP) for dealing with linear-time modal operators. To this aim, we provide a definition of a first-order version of TEL that shares the syntax of first-order Linear-time Temporal Logic (LTL) but has a different semantics, selecting some LTL models we call temporal stable models. Then, we consider a subclass of theories (called splittable temporal logic programs) that are close to usual logic programs but allowing a restricted use of temporal operators. In this setting, we provide a syntactic definition of safe variables that suffices to show the property of domain independence -- that is, addition of arbitrary elements in the universe does not vary the set of temporal stable models. Finally, we present a method for computing the derivable facts by constructing a non-temporal logic program with variables that is fed to a standard ASP grounder. The information provided by the grounder is then used to generate a subset of ground temporal rules which is equivalent to (and generally smaller than) the full program instantiation.
We study the problem of computer-assisted teaching with explanations. Conventional approaches for machine teaching typically only provide feedback at the instance level e.g., the category or label of the instance. However, it is intuitive that clear explanations from a knowledgeable teacher can significantly improve a students ability to learn a new concept. To address these existing limitations, we propose a teaching framework that provides interpretable explanations as feedback and models how the learner incorporates this additional information. In the case of images, we show that we can automatically generate explanations that highlight the parts of the image that are responsible for the class label. Experiments on human learners illustrate that, on average, participants achieve better test set performance on challenging categorization tasks when taught with our interpretable approach compared to existing methods.
Description Logic Programs (dl-programs) proposed by Eiter et al. constitute an elegant yet powerful formalism for the integration of answer set programming with description logics, for the Semantic Web. In this paper, we generalize the notions of co mpletion and loop formulas of logic programs to description logic programs and show that the answer sets of a dl-program can be precisely captured by the models of its completion and loop formulas. Furthermore, we propose a new, alternative semantics for dl-programs, called the {em canonical answer set semantics}, which is defined by the models of completion that satisfy what are called canonical loop formulas. A desirable property of canonical answer sets is that they are free of circular justifications. Some properties of canonical answer sets are also explored.
Successful teaching requires an assumption of how the learner learns - how the learner uses experiences from the world to update their internal states. We investigate what expectations people have about a learner when they teach them in an online man ner using rewards and punishment. We focus on a common reinforcement learning method, Q-learning, and examine what assumptions people have using a behavioral experiment. To do so, we first establish a normative standard, by formulating the problem as a machine teaching optimization problem. To solve the machine teaching optimization problem, we use a deep learning approximation method which simulates learners in the environment and learns to predict how feedback affects the learners internal states. What do people assume about a learners learning and discount rates when they teach them an idealized exploration-exploitation task? In a behavioral experiment, we find that people can teach the task to Q-learners in a relatively efficient and effective manner when the learner uses a small value for its discounting rate and a large value for its learning rate. However, they still are suboptimal. We also find that providing people with real-time updates of how possible feedback would affect the Q-learners internal states weakly helps them teach. Our results reveal how people teach using evaluative feedback and provide guidance for how engineers should design machine agents in a manner that is intuitive for people.
In this short note we address the issue of expressing norms (such as obligations and prohibitions) in temporal logic. In particular, we address the argument from [Governatori 2015] that norms cannot be expressed in Linear Time Temporal Logic (LTL).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا