ﻻ يوجد ملخص باللغة العربية
The Gardner length scale $xi$ is the correlation length in the vicinity of the Gardner transition, which is an avoided transition in glasses where the phase space of the glassy phase fractures into smaller sub-basins on experimental time scales. We argue that $xi$ grows like $ sim sqrt{B_{infty}/G_{infty}}$, where $B_{infty}$ is the bulk modulus and $G_{infty}$ is the shear modulus, both measured in the high-frequency limit of the glassy state. We suggest that $xi$ might be inferred from stress-stress correlation functions, which is more practical for experimental investigation than studying two copies of the system, which can only be done in numerical simulations. Our arguments are illustrated by explicit calculations for a system of disks moving in a narrow channel, which is solved exactly by transfer matrix techniques.
We search for a Gardner transition in glassy glycerol, a standard molecular glass, measuring the third harmonics cubic susceptibility $chi_3^{(3)}$ from slightly below the usual glass transition temperature down to $10K$. According to the mean field
We report on zero field cooled magnetization relaxation experiments on a concen- trated frozen ferrofluid exhibiting a low temperature superspin glass transition. With a method initially developed for spin glasses, we investigate the field dependence
Several theories of the glass transition propose that the structural relaxation time {tau}{alpha} is controlled by a growing static length scale {xi} that is determined by the free energy landscape but not by the local dynamical rules governing its e
The growth of the spin-glass correlation length has been measured as a function of the waiting time $t_{mathrm{w}}$ on a single crystal of CuMn (6 at.%), reaching values $xisim 150$ nm, larger than any other glassy correlation-length measured to date
Recent theoretical advances predict the existence, deep into the glass phase, of a novel phase transition, the so-called Gardner transition. This transition is associated with the emergence of a complex free energy landscape composed of many marginal