ﻻ يوجد ملخص باللغة العربية
The parametrized black hole quasinormal ringdown formalism is useful to compute quasinormal mode (QNM) frequencies if a master equation for the gravitational perturbation around a black hole has a small deviation from the Regge-Wheeler or Zerilli equation. In this formalism, the deviation of QNM frequency from general relativity can be calculated by small deviation parameters and model independent coefficients. In this paper, we derive recursion relations for the model independent coefficients. Using these relations, the higher order coefficients are written only by the lower order coefficients. Thus, we only need the lower order coefficients when we numerically compute the model independent coefficients.
Black hole solutions in general relativity are simple. The frequency spectrum of linear perturbations around these solutions (i.e., the quasinormal modes) is also simple, and therefore it is a prime target for fundamental tests of black hole spacetim
Linear perturbations of spherically symmetric spacetimes in general relativity are described by radial wave equations, with potentials that depend on the spin of the perturbing field. In previous work we studied the quasinormal mode spectrum of space
Deep conceptual problems associated with classical black holes can be addressed in string theory by the fuzzball paradigm, which provides a microscopic description of a black hole in terms of a thermodynamically large number of regular, horizonless,
In this article we show that the asymptotic iteration method (AIM) allows one to numerically find the quasinormal modes of Schwarzschild and Schwarzschild de Sitter (SdS) black holes. An added benefit of the method is that it can also be used to calc
The paper has been withdrawn by the author.