ﻻ يوجد ملخص باللغة العربية
We present the results from a particle-in-cell (PIC) simulation that models the interaction between a spatially localized electron-positron cloud and an electron-ion plasma. The latter is permeated by a magnetic field that is initially spatially uniform and aligned with the mean velocity vector of the pair cloud. The pair cloud expels the magnetic field and piles it up into an electromagnetic piston. Its electromagnetic field is strong enough to separate the pair cloud from the ambient plasma in the direction that is perpendicular to the cloud propagation direction. The piston propagates away from the spine of the injected pair cloud and it accelerates the protons to a high nonrelativistic speed. The accelerated protons form an outer cocoon that will eventually become separated from the unperturbed ambient plasma by a fast magnetosonic shock. No electromagnetic piston forms at the front of the cloud and a shock is mediated here by the filamentation instability. The final plasma distribution resembles that of a hydrodynamic jet. Collisionless plasma jets may form in the coronal plasma of accreting black holes and the interaction between the strong magnetic field of the piston and the hot pair cloud may contribute to radio emissions by such objects.
We study the effect a guiding magnetic field has on the formation and structure of a pair jet that propagates through a collisionless electron-proton plasma at rest. We model with a PIC simulation a pair cloud with the temperature 400 keV and mean sp
By modelling the expansion of a cloud of electrons and positrons with the temperature 400 keV that propagates at the mean speed 0.9c ($c:$ speed of light) through an initially unmagnetized electron-proton plasma with a particle-in-cell (PIC) simulati
We study with a one-dimensional particle-in-cell (PIC) simulation the expansion of a pair cloud into a magnetized electron-proton plasma as well as the formation and subsequent propagation of a tangential discontinuity that separates both plasmas. It
We study with a two-dimensional particle-in-cell simulation the stability of a discontinuity or piston, which separates an electron-positron cloud from a cooler electron-proton plasma. Such a piston might be present in the relativistic jets of accret
The expansion of a charge-neutral cloud of electrons and positrons with the temperature 1 MeV into an unmagnetized ambient plasma is examined with a 2D particle-in-cell (PIC) simulation. The pair outflow drives solitary waves in the ambient protons.