ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative lower bounds on the Lyapunov exponent from multivariate matrix inequalities

79   0   0.0 ( 0 )
 نشر من قبل Marius Lemm
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Lyapunov exponent characterizes the asymptotic behavior of long matrix products. Recognizing scenarios where the Lyapunov exponent is strictly positive is a fundamental challenge that is relevant in many applications. In this work we establish a novel tool for this task by deriving a quantitative lower bound on the Lyapunov exponent in terms of a matrix sum which is efficiently computable in ergodic situations. Our approach combines two deep results from matrix analysis --- the $n$-matrix extension of the Golden-Thompson inequality and the Avalanche-Principle. We apply these bounds to the Lyapunov exponents of Schrodinger cocycles with certain ergodic potentials of polymer type and arbitrary correlation structure. We also derive related quantitative stability results for the Lyapunov exponent near aligned diagonal matrices and a bound for almost-commuting matrices.



قيم البحث

اقرأ أيضاً

We construct discontinuous point of the Lyapunov exponent of quasiperiodic Schrodinger cocycles in the Gevrey space $G^{s}$ with $s>2$. In contrast, the Lyapunov exponent has been proved to be continuous in the Gevrey space $G^{s}$ with $s<2$ cite{kl ein,cgyz}. This shows that $G^2$ is the transition space for the continuity of the Lyapunov exponent.
We consider a Schrodinger operator on the half-line with a Dirichlet boundary condition at the origin and show that moments of its negative eigenvalues can be estimated by the part of the potential that is larger than the critical Hardy weight. The e stimate is valid for the critical value of the moment parameter.
119 - D.J.W. Simpson 2019
The collision of a fixed point with a switching manifold (or border) in a piecewise-smooth map can create many different types of invariant sets. This paper explores two techniques that, combined, establish a chaotic attractor is created in a border- collision bifurcation in $mathbb{R}^d$ $(d ge 1)$. First, asymptotic stability of the fixed point at the bifurcation is characterised and shown to imply a local attractor is created. Second, a lower bound on the maximal Lyapunov exponent is obtained from the determinants of the one-sided Jacobian matrices associated with the fixed point. Special care is taken to accommodate points whose forward orbits intersect the switching manifold as such intersections can have a stabilising effect. The results are applied to the two-dimensional border-collision normal form focusing on parameter values for which the map is piecewise area-expanding.
78 - Takeshi Morita 2018
Classical particle motions in an inverse harmonic potential show the exponential sensitivity to initial conditions, where the Lyapunov exponent $lambda_L$ is uniquely fixed by the shape of the potential. Hence, if we naively apply the bound on the Ly apunov exponent $lambda_L le 2pi T/ hbar$ to this system, it predicts the existence of the bound on temperature (the lowest temperature) $T ge hbar lambda_L/ 2pi$ and the system cannot be taken to be zero temperature when $hbar eq 0$. This seems a puzzle because particle motions in an inverse harmonic potential should be realized without introducing any temperature but this inequality does not allow it. In this article, we study this problem in $N$ non-relativistic free fermions in an inverse harmonic potential ($c=1$ matrix model). We find that thermal radiation is {em induced} when we consider the system in a semi-classical regime even though the system is not thermal at the classical level. This is analogous to the thermal radiation of black holes, which are classically non-thermal but behave as thermal baths quantum mechanically. We also show that the temperature of the radiation in our model saturates the inequality, and thus, the system saturates the bound on the Lyapunov exponent, although the system is free and integrable. Besides, this radiation is related to acoustic Hawking radiation of the fermi fluid.
We consider the classical problem of the continuation of periodic orbits surviving to the breaking of invariant lower dimensional resonant tori in nearly integrable Hamiltonian systems. In particular we extend our previous results (presented in CNSNS , 61:198-224, 2018) for full dimensional resonant tori to lower dimensional ones. We develop a constructive normal form scheme that allows to identify and approximate the periodic orbits which continue to exist after the breaking of the resonant torus. A specific feature of our algorithm consists in the possibility of dealing with degenerate periodic orbits. Besides, under suitable hypothesis on the spectrum of the approximate periodic orbit, we obtain information on the linear stability of the periodic orbits feasible of continuation. A pedagogical example involving few degrees of freedom, but connected to the classical topic of discrete solitons in dNLS-lattices, is also provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا