ﻻ يوجد ملخص باللغة العربية
Blockchains are typically managed by peer-to-peer (P2P) networks providing the support and substrate to the so-called distributed ledger (DLT), a replicated, shared, and synchronized data structure, geographically spread across multiple nodes. The Bitcoin (BTC) blockchain is by far the most well known DLT, used to record transactions among peers, based on the BTC digital currency. In this paper, we focus on the network side of the BTC P2P network, analyzing its nodes from a purely network measurements-based approach. We present a BTC crawler able to discover and track the BTC P2P network through active measurements, and use it to analyze its main properties. Through the combined analysis of multiple snapshots of the BTC network as well as by using other publicly available data sources on the BTC network and DLT, we unveil the BTC P2P network, locate its active nodes, study their performance, and track the evolution of the network over the past two years. Among other relevant findings, we show that (i) the size of the BTC network has remained almost constant during the last 12 months - since the major BTC price drop in early 2018, (ii) most of the BTC P2P network resides in US and EU countries, and (iii) despite this western network locality, most of the mining activity and corresponding revenue is controlled by major mining pools located in China. By additionally analyzing the distribution of BTC coins among independent BTC entities (i.e., single BTC addresses or groups of BTC addresses controlled by the same actor), we also conclude that (iv) BTC is very far from being the decentralized and uncontrolled system it is so much advertised to be, with only 4.5% of all the BTC entities holding about 85% of all circulating BTC coins.
Investors tend to sell their winning investments and hold onto their losers. This phenomenon, known as the emph{disposition effect} in the field of behavioural finance, is well-known and its prevalence has been shown in a number of existing markets.
Some peers in the Bitcoin P2P network distributed a huge amount of spam IP addresses during July 2021. These spam IP addresses did not belong to actual Bitcoin peers. We found that the behavior of the spamming peers can be used to determine the numbe
Multiple probabilistic packet marking (PPM) schemes for IP traceback have been proposed to deal with Distributed Denial of Service (DDoS) attacks by reconstructing their attack graphs and identifying the attack sources. In this paper, ten PPM-based I
Routing attacks remain practically effective in the Internet today as existing countermeasures either fail to provide protection guarantees or are not easily deployable. Blockchain systems are particularly vulnerable to such attacks as they rely on I
IP spoofing enables reflection and amplification attacks, which cause major threats to the current Internet infrastructure. IP packets with incorrect source addresses would help to improve the situation. This is easy at the attackers network, but ver