ﻻ يوجد ملخص باللغة العربية
The TADPOLE Challenge compares the performance of algorithms at predicting the future evolution of individuals at risk of Alzheimers disease. TADPOLE Challenge participants train their models and algorithms on historical data from the Alzheimers Disease Neuroimaging Initiative (ADNI) study. Participants are then required to make forecasts of three key outcomes for ADNI-3 rollover participants: clinical diagnosis, ADAS-Cog 13, and total volume of the ventricles -- which are then compared with future measurements. Strong points of the challenge are that the test data did not exist at the time of forecasting (it was acquired afterwards), and that it focuses on the challenging problem of cohort selection for clinical trials by identifying fast progressors. The submission phase of TADPOLE was open until 15 November 2017; since then data has been acquired until April 2019 from 219 subjects with 223 clinical visits and 150 Magnetic Resonance Imaging (MRI) scans, which was used for the evaluation of the participants predictions. Thirty-three teams participated with a total of 92 submissions. No single submission was best at predicting all three outcomes. For diagnosis prediction, the best forecast (team Frog), which was based on gradient boosting, obtained a multiclass area under the receiver-operating curve (MAUC) of 0.931, while for ventricle prediction the best forecast (team EMC1), which was based on disease progression modelling and spline regression, obtained mean absolute error of 0.41% of total intracranial volume (ICV). For ADAS-Cog 13, no forecast was considerably better than the benchmark mixed effects model (BenchmarkME), provided to participants before the submission deadline. Further analysis can help understand which input features and algorithms are most suitable for Alzheimers disease prediction and for aiding patient stratification in clinical trials.
We present the findings of The Alzheimers Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge, which compared the performance of 92 algorithms from 33 international teams at predicting the future trajectory of 219 individuals at risk of
In order to find effective treatments for Alzheimers disease (AD), we need to identify subjects at risk of AD as early as possible. To this end, recently developed disease progression models can be used to perform early diagnosis, as well as predict
Accurate diagnosis of Alzheimers Disease (AD) entails clinical evaluation of multiple cognition metrics and biomarkers. Metrics such as the Alzheimers Disease Assessment Scale - Cognitive test (ADAS-cog) comprise multiple subscores that quantify diff
Background:Cognitive assessments represent the most common clinical routine for the diagnosis of Alzheimers Disease (AD). Given a large number of cognitive assessment tools and time-limited office visits, it is important to determine a proper set of
Alzheimers disease is the most common cause of dementia. It is the fifth-leading cause of death among elderly people. With high genetic heritability (79%), finding disease causal genes is a crucial step in find treatment for AD. Following the Interna