ﻻ يوجد ملخص باللغة العربية
We extend the nonsupersymmetric SO(10) grand unification theories by adding a horizontal symmetry, which connects the three generations of fermions. Without committing to any specific symmetry group, we investigate the 1-loop renormalization group evolutions of the gauge couplings with one and two intermediate breaking scales. We find that depending on the SO(10) breaking chains, gauge coupling unification is compatible with only a handful of choices of representations of the Higgs bosons under the horizontal symmetry.
We combine $SO(10)$ Grand Unified Theories (GUTs) with $A_4$ modular symmetry and present a comprehensive analysis of the resulting quark and lepton mass matrices for all the simplest cases. We focus on the case where the three fermion families in th
We present a new possibility for achieving doublet-triplet splitting naturally in supersymmetric SO(10) grand unified theories. It is based on a missing partner mechanism which is realized with the 126 + 126-bar Higgs superfields. These Higgs fields,
We apply the perturbative grand unification due to renormalization to distinguish TeV-scale relics of supersymmetric $rm{SO}(10)$ scenarios. With rational theoretical constraints taken into account, we find that for the breaking pattern of either $rm
We study the proton lifetime in the $SO(10)$ Grand Unified Theory (GUT), which has the left-right (LR) symmetric gauge theory below the GUT scale. In particular, we focus on the minimal model without the bi-doublet Higgs field in the LR symmetric mod
We discuss the possibility of unifying in a simple and economical manner the Yukawa couplings of third generation fermions in a non-supersymmetric SO(10) model with an intermediate symmetry breaking, focusing on two possible patterns with intermediat