ﻻ يوجد ملخص باللغة العربية
We present an interpretation of scar states and quantum revivals as weakly broken representations of Lie algebras spanned by a subset of eigenstates of a many-body quantum system. We show that the PXP model, describing strongly-interacting Rydberg atoms, supports a loose embedding of multiple $mathrm{su(2)}$ Lie algebras corresponding to distinct families of scarred eigenstates. Moreover, we demonstrate that these embeddings can be made progressively more accurate via an iterative process which results in optimal perturbations that stabilize revivals from arbitrary charge density wave product states, $|mathbb{Z}_nrangle$, including ones that show no revivals in the unperturbed PXP model. We discuss the relation between the loose embeddings of Lie algebras present in the PXP model and recent exact constructions of scarred states in related models.
Non-equilibrium properties of quantum materials present many intriguing properties, among them athermal behavior, which violates the eigenstate thermalization hypothesis. Such behavior has primarily been observed in disordered systems. More recently,
The discovery of Quantum Many-Body Scars (QMBS) both in Rydberg atom simulators and in the Affleck-Kennedy-Lieb-Tasaki (AKLT) spin-1 chain model, have shown that a weak violation of ergodicity can still lead to rich experimental and theoretical physi
We study a kinetically constrained pair hopping model that arises within a Landau level in the quantum Hall effect. At filling $ u = 1/3$, the model exactly maps onto the so-called PXP model, a constrained model for the Rydberg atom chain that is num
We study the spin-1 XY model on a hypercubic lattice in $d$ dimensions and show that this well-known nonintegrable model hosts an extensive set of anomalous finite-energy-density eigenstates with remarkable properties. Namely, they exhibit subextensi
We revisit the $eta$-pairing states in Hubbard models and explore their connections to quantum many-body scars to discover a universal scars mechanism. $eta$-pairing occurs due to an algebraic structure known as a Spectrum Generating Algebra (SGA), g