ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for Ultra-fast Outflows in AGN using Variability Spectra

357   0   0.0 ( 0 )
 نشر من قبل Zsofi Igo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a qualitative search for ultra-fast outflows (UFOs) in excess variance spectra of radio-quiet active galactic nuclei (AGN). We analyse 42 sources from the Tombesi et al. (2010) spectroscopic UFO detection sample, and an additional 22 different sources from the Kara et al. (2016) variability sample. A total of 58 sources have sufficient observational data from XMM-Newton EPIC-pn and variability for an excess variance spectrum to be calculated. We examine these spectra for peaks corresponding to variable blue-shifted H- and He-like ion absorption lines from UFOs. We find good evidence for such outflows in 28% of the AGN sample and weak evidence in a further 31%, meaning that $sim$ 30-60% of the AGN sample hosts such UFOs. The mean and median blue-shifted velocity is found to be $sim$ 0.14c and 0.12c, respectively. Current variability methods allow for a fast, model-independent determination of UFOs, however, further work needs to be undertaken to better characterize the statistical significance of the peaks in these spectra by more rigorous modelling. Detecting good evidence for variable UFO lines in a large number of sources also lays the groundwork for detailed analysis of the variability timescales of the absorbers. This will allow us to probe their densities and hence distances from the central super-massive black hole.



قيم البحث

اقرأ أيضاً

One of the canonical physical properties of ultra-fast outflows (UFOs) seen in a diverse population of active galactic nuclei (AGNs) is its seemingly very broad width (i.e. $Delta v sim 10,000$ km~s$^{-1}$) , a feature often required for X-ray spectr al modeling. While unclear to date, this condition is occasionally interpreted and justified as internal turbulence within the UFOs for simplicity. In this work, we exploit a transverse motion of a three-dimensional accretion-disk wind, an essential feature of non-radial outflow morphology unique to magnetohydrodynamic (MHD) outflows. We argue that at least part of the observed line width of UFOs may reflect the degree of transverse velocity gradient due to Doppler broadening around a putative compact X-ray corona in the proximity of a black hole. In this scenario, line broadening is sensitive to the geometrical size of the corona, $R_c$. We calculate the broadening factor as a function of coronal radius $R_c$ and velocity smearing factor $f_{rm sm}$ at a given plasma position. We demonstrate, as a case study of the quasar, PDS~456, that the spectral analysis favors a compact coronal size of $R_c /R_g lesssim 10$ where $R_g$ is gravitational radius. Such a compact corona is long speculated from both X-ray reverberation study and the lamppost model for disk emission also consistent with microlensing results. Combination of such a transverse broadening around a small corona can be a direct probe of a substantial rotational motion perhaps posing a serious challenge to radiation-driven wind viewpoint.
438 - F. Tombesi 2012
X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in >40% of the sources. Their outflow velocities are in the range 0.03-0.3c, with a mean value of ~0.14c. The ionization is high, in the range logxi~3-6 erg s^{-1} cm, and also the associated column densities are large, in the interval ~10^{22}-10^{24} cm^{-2}. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets and their study can provide important clues on the connection between accretion disks, winds and jets.
Ultra-fast outflows (UFOs) are seen in many AGN, giving a possible mode for AGN feedback onto the host galaxy. However, the mechanism(s) for the launch and acceleration of these outflows are currently unknown, with UV line driving apparently strongly disfavoured as the material along the line of sight is so highly ionised that it has no UV transitions. We revisit this issue using the Suzaku X-ray data from PDS 456, an AGN with the most powerful UFO seen in the local Universe. We explore conditions in the wind by developing a new 3-D Monte-Carlo code for radiation transport. The code only handles highly ionised ions, but the data show the ionisation state of the wind is high enough that this is appropriate, and this restriction makes it fast enough to explore parameter space. We reproduce the results of earlier work, confirming that the mass loss rate in the wind is around 30% of the inferred inflow rate through the outer disc. We show for the first time that UV line driving is likely to be a major contribution to the wind acceleration. The mass loss rate in the wind matches that predicted from a purely line driven system, and this UV absorption can take place out of the line of sight. Continuum driving should also play a role as the source is close to Eddington. This predicts that the most extreme outflows will be produced from the highest mass accretion rate flows onto high mass black holes, as observed.
129 - F. Tombesi 2014
Recent X-ray observations show absorbing winds with velocities up to mildly-relativistic values of the order of ~0.1c in a limited sample of 6 broad-line radio galaxies. They are observed as blue-shifted Fe XXV-XXVI K-shell absorption lines, similarl y to the ultra-fast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud AGNs observed with XMM-Newton and Suzaku. The sample is drawn from the Swift BAT 58-month catalog and blazars are excluded. X-ray bright FR II radio galaxies constitute the majority of the sources. Combining the results of this analysis with those in the literature we find that UFOs are detected in >27% of the sources. However, correcting for the number of spectra with insufficient signal-to-noise, we can estimate that the incidence of UFOs is this sample of radio-loud AGNs is likely in the range f=(50+/-20)%. A photo-ionization modeling of the absorption lines with XSTAR allows to estimate the distribution of their main parameters. The observed outflow velocities are broadly distributed between v_out<1,000 km s^-1 and v_out~0.4c, with mean and median values of v_out~0.133c and v_out~0.117c, respectively. The material is highly ionized, with an average ionization parameter of logxi~4.5 erg s^-1 cm, and the column densities are larger than N_H > 10^22 cm^-2. Overall, these characteristics are consistent with the presence of complex accretion disk winds in a significant fraction of radio-loud AGNs and demonstrate that the presence of relativistic jets does not preclude the existence of winds, in accordance with several theoretical models.
Among a number of active galactic nuclei (AGNs) that drive ionized outflows in X-rays, a low-redshift (z = 0.184) quasar, PDS 456, is long known to exhibit one of the exemplary ultra-fast outflows (UFOs). However, the physical process of acceleration mechanism is yet to be definitively constrained. In this work, we model the variations of the Fe K UFO properties in PDS 456 over many epochs in X-ray observations in the context of magnetohydrodynamic (MHD) accretion-disk winds employed in our earlier studies of similar X-ray absorbers. We applied the model to the 2013/2014 XMM-Newton/NuSTAR spectra to determine the UFOs condition; namely, velocity, ionization parameter, column density and equivalent width (EW). Under some provisions on the dependence of X-ray luminosity on the accretion rate applicable to near-Eddington state, our photoionization calculations, coupled to a 2.5-dimensional MHD-driven wind model, can further reproduce the observed correlations of the UFO velocity and the anti-correlation of its EW with X-ray strength of PDS 456. This work demonstrates that UFOs, even without radiative pressure, can be driven as an extreme case purely by magnetic interaction while also producing the observed spectrum and correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا