ﻻ يوجد ملخص باللغة العربية
Synthetic Aperture Radar (SAR) imaging systems operate by emitting radar signals from a moving object, such as a satellite, towards the target of interest. Reflected radar echoes are received and later used by image formation algorithms to form a SAR image. There is great interest in using SAR images in computer vision tasks such as classification or automatic target recognition. Today, however, SAR applications consist of multiple operations: image formation followed by image processing. In this work, we train a deep neural network that performs both the image formation and image processing tasks, integrating the SAR processing pipeline. Results show that our integrated pipeline can output accurately classified SAR imagery with image quality comparable to those formed using a traditional algorithm. We believe that this work is the first demonstration of an integrated neural network based SAR processing pipeline using real data.
Although deep learning has achieved great success in image classification tasks, its performance is subject to the quantity and quality of training samples. For classification of polarimetric synthetic aperture radar (PolSAR) images, it is nearly imp
Automated medical image segmentation is an important step in many medical procedures. Recently, deep learning networks have been widely used for various medical image segmentation tasks, with U-Net and generative adversarial nets (GANs) being some of
mmWave radar has been shown as an effective sensing technique in low visibility, smoke, dusty, and dense fog environment. However tapping the potential of radar sensing to reconstruct 3D object shapes remains a great challenge, due to the characteris
Image denoising is the process of removing noise from noisy images, which is an image domain transferring task, i.e., from a single or several noise level domains to a photo-realistic domain. In this paper, we propose an effective image denoising met
Data and data sources have become increasingly essential in recent decades. Scientists and researchers require more data to deploy AI approaches as the field continues to improve. In recent years, the rapid technological advancements have had a signi