On the Quality of First-Order Approximation of Functions with Holder Continuous Gradient


الملخص بالإنكليزية

We show that Holder continuity of the gradient is not only a sufficient condition, but also a necessary condition for the existence of a global upper bound on the error of the first-order Taylor approximation. We also relate this global upper bound to the Holder constant of the gradient. This relation is expressed as an interval, depending on the Holder constant, in which the error of the first-order Taylor approximation is guaranteed to be. We show that, for the Lipschitz continuous case, the interval cannot be reduced. An application to the norms of quadratic forms is proposed, which allows us to derive a novel characterization of Euclidean norms.

تحميل البحث