ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum tricritical point emerging in the spin-boson model with two dissipative spins in staggered biases

71   0   0.0 ( 0 )
 نشر من قبل Qing-Hu Chen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the spin-boson model (SBM) with two spins in staggered biases by a numerically exact method based on variational matrix product states. Several observables such as the magnetization, the entanglement entropy between the two spins and the bosonic environment, the ground-state energy, as well as the correlation function for two spins are calculated exactly. The characteristics of these observables suggest that the staggered biases can drive the 2nd-order quantum phase transition (QPT) to the 1st-order QPT in the sub-Ohmic SBM, while the Kosterlitz-Thouless QPT in the Ohmic SBM goes directly to the 1st-order one. A quantum tricritical point, where the continuous QPT meets the 1st-order one, can then be detected. It is found that the staggered biases would not change the universality of { the phase transition in this model} below the quantum tricritical point.



قيم البحث

اقرأ أيضاً

The suitable interpolation between classical percolation and a special variant of explosive percolation enables the explicit realization of a tricritical percolation point. With high-precision simulations of the order parameter and the second moment of the cluster size distribution a fully consistent tricritical scaling scenario emerges yielding the tricritical crossover exponent $1/phi_t=1.8pm0.1$.
We study the anisotropic spin-boson model (SBM) with the subohmic bath by a numerically exact method based on variational matrix product states. A rich phase diagram is found in the anisotropy-coupling strength plane by calculating several observable s. There are three distinct quantum phases: a delocalized phase with even parity (phase I), a delocalized phase with odd parity (phase II), and a localized phase with broken $Z_2$ symmetry (phase III), which intersect at a quantum tricritical point. The competition between those phases would give overall picture of the phase diagram. For small power of the spectral function of the bosonic bath, the quantum phase transition (QPT) from phase I to III with mean-field critical behavior is present, similar to the isotropic SBM. The novel phase diagram full with three different phases can be found at large power of the spectral function: For highly anisotropic case, the system experiences the QPTs from phase I to II via 1st-order, and then to the phase III via 2nd-order with the increase of the coupling strength. For low anisotropic case, the system only experiences the continuous QPT from phase I to phase III with the non-mean-field critical exponents. Very interestingly, at the moderate anisotropy, the system would display the continuous QPTs for several times but with the same critical exponents. This unusual reentrance to the same localized phase is discovered in the light-matter interacting systems. The present study on the anisotropic SBM could open an avenue to the rich quantum criticality.
We study numerically the two-point correlation functions of height functions in the six-vertex model with domain wall boundary conditions. The correlation functions and the height functions are computed by the Markov chain Monte-Carlo algorithm. Part icular attention is paid to the free fermionic point ($Delta=0$), for which the correlation functions are obtained analytically in the thermodynamic limit. A good agreement of the exact and numerical results for the free fermionic point allows us to extend calculations to the disordered ($|Delta|<1$) phase and to monitor the logarithm-like behavior of correlation functions there. For the antiferroelectric ($Delta<-1$) phase, the exponential decrease of correlation functions is observed.
The effectiveness of the variational approach a la Feynman is proved in the spin-boson model, i.e. the simplest realization of the Caldeira-Leggett model able to reveal the quantum phase transition from delocalized to localized states and the quantum dissipation and decoherence effects induced by a heat bath. After exactly eliminating the bath degrees of freedom, we propose a trial, non local in time, interaction between the spin and itself simulating the coupling of the two level system with the bosonic bath. It stems from an Hamiltonian where the spin is linearly coupled to a finite number of harmonic oscillators whose frequencies and coupling strengths are variationally determined. We show that a very limited number of these fictitious modes is enough to get a remarkable agreement, up to very low temperatures, with the data obtained by using an approximation-free Monte Carlo approach, predicting: 1) in the Ohmic regime, a Beretzinski-Thouless-Kosterlitz quantum phase transition exhibiting the typical universal jump at the critical value; 2) in the sub-Ohmic regime ($s leq 0.5$), mean field quantum phase transitions, with logarithmic corrections for $s=0.5$.
We introduce and analyze a quantum spin/Majorana chain with a tricritical Ising point separating a critical phase from a gapped phase with order-disorder coexistence. We show that supersymmetry is not only an emergent property of the scaling limit, b ut manifests itself on the lattice. Namely, we find explicit lattice expressions for the supersymmetry generators and currents. Writing the Hamiltonian in terms of these generators allows us to find the ground states exactly at a frustration-free coupling. These confirm the coexistence between two (topologically) ordered ground states and a disordered one in the gapped phase. Deforming the model by including explicit chiral symmetry breaking, we find the phases persist up to an unusual chiral phase transition where the supersymmetry becomes exact even on the lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا