Proof of the Peres conjecture for contextuality


الملخص بالإنكليزية

A central result in the foundations of quantum mechanics is the Kochen-Specker theorem. In short, it states that quantum mechanics cannot be reconciled with classical models that are noncontextual for ideal measurements. The first explicit derivation by Kochen and Specker was rather complex, but considerable simplifications have been achieved thereafter. We propose a systematic approach to find minimal Hardy-type and Greenberger-Horne-Zeilinger-type (GHZ-type) proofs of the Kochen-Specker theorem, these are characterized by the fact that the predictions of classical models are opposite to the predictions of quantum mechanics. Based on our results, we show that the Kochen-Specker set with 18 vectors from Cabello et al. [A. Cabello et al., Phys. Lett. A 212, 183 (1996)] is the minimal set for any dimension, verifying a longstanding conjecture by Peres. Our results allow to identify minimal contextuality scenarios and to study their usefulness for information processing.

تحميل البحث